{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": { "id": "ZLtZkXujsBRi" }, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn import metrics" ] }, { "cell_type": "code", "source": [ "df = pd.read_csv(\"pima_indian.csv\")\n", "feature_col_names = ['num_preg', 'glucose_conc', 'diastolic_bp', 'thickness', 'insulin', 'bmi', 'diab_pred', 'age']\n", "predicted_class_names = ['diabetes']" ], "metadata": { "id": "uuLncoHFtosw" }, "execution_count": 6, "outputs": [] }, { "cell_type": "code", "source": [ "df.head(10)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "Ju_vl25Su1R6", "outputId": "3f016c27-8b16-4fed-b436-98ceb2965dc1" }, "execution_count": 7, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " num_preg glucose_conc diastolic_bp thickness insulin bmi diab_pred \\\n", "0 6 148 72 35 0 33.6 0.627 \n", "1 1 85 66 29 0 26.6 0.351 \n", "2 8 183 64 0 0 23.3 0.672 \n", "3 1 89 66 23 94 28.1 0.167 \n", "4 0 137 40 35 168 43.1 2.288 \n", "5 5 116 74 0 0 25.6 0.201 \n", "6 3 78 50 32 88 31.0 0.248 \n", "7 10 115 0 0 0 35.3 0.134 \n", "8 2 197 70 45 543 30.5 0.158 \n", "9 8 125 96 0 0 0.0 0.232 \n", "\n", " age diabetes \n", "0 50 1 \n", "1 31 0 \n", "2 32 1 \n", "3 21 0 \n", "4 33 1 \n", "5 30 0 \n", "6 26 1 \n", "7 29 0 \n", "8 53 1 \n", "9 54 1 " ], "text/html": [ "\n", "
\n", " | num_preg | \n", "glucose_conc | \n", "diastolic_bp | \n", "thickness | \n", "insulin | \n", "bmi | \n", "diab_pred | \n", "age | \n", "diabetes | \n", "
---|---|---|---|---|---|---|---|---|---|
0 | \n", "6 | \n", "148 | \n", "72 | \n", "35 | \n", "0 | \n", "33.6 | \n", "0.627 | \n", "50 | \n", "1 | \n", "
1 | \n", "1 | \n", "85 | \n", "66 | \n", "29 | \n", "0 | \n", "26.6 | \n", "0.351 | \n", "31 | \n", "0 | \n", "
2 | \n", "8 | \n", "183 | \n", "64 | \n", "0 | \n", "0 | \n", "23.3 | \n", "0.672 | \n", "32 | \n", "1 | \n", "
3 | \n", "1 | \n", "89 | \n", "66 | \n", "23 | \n", "94 | \n", "28.1 | \n", "0.167 | \n", "21 | \n", "0 | \n", "
4 | \n", "0 | \n", "137 | \n", "40 | \n", "35 | \n", "168 | \n", "43.1 | \n", "2.288 | \n", "33 | \n", "1 | \n", "
5 | \n", "5 | \n", "116 | \n", "74 | \n", "0 | \n", "0 | \n", "25.6 | \n", "0.201 | \n", "30 | \n", "0 | \n", "
6 | \n", "3 | \n", "78 | \n", "50 | \n", "32 | \n", "88 | \n", "31.0 | \n", "0.248 | \n", "26 | \n", "1 | \n", "
7 | \n", "10 | \n", "115 | \n", "0 | \n", "0 | \n", "0 | \n", "35.3 | \n", "0.134 | \n", "29 | \n", "0 | \n", "
8 | \n", "2 | \n", "197 | \n", "70 | \n", "45 | \n", "543 | \n", "30.5 | \n", "0.158 | \n", "53 | \n", "1 | \n", "
9 | \n", "8 | \n", "125 | \n", "96 | \n", "0 | \n", "0 | \n", "0.0 | \n", "0.232 | \n", "54 | \n", "1 | \n", "