{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "source": [ "import sklearn\n", "import pandas as pd" ], "metadata": { "id": "akbzcUMjyzze" }, "execution_count": 12, "outputs": [] }, { "cell_type": "code", "source": [ "from sklearn.datasets import load_iris\n", "from sklearn.neighbors import KNeighborsClassifier\n" ], "metadata": { "id": "dk2UYMsty0cD" }, "execution_count": 13, "outputs": [] }, { "cell_type": "code", "source": [ "iris=load_iris()" ], "metadata": { "id": "sTQSEBmTy2Uk" }, "execution_count": 14, "outputs": [] }, { "cell_type": "code", "source": [ "x=iris.data\n", "y=iris.target\n", "\n", "print(\"Sepal-length\",\"Sepal-width\",\"Petal-length\",\"Petal-width\")\n", "print(x)\n", "print(\"class: 0-Iris-Setosa,1-Iris-Versicolour,2-Iris-Virginica\")\n", "print(y)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-XRHaVhSy3vW", "outputId": "31440734-6ab2-4295-884c-bf519c5843d4" }, "execution_count": 15, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Sepal-length Sepal-width Petal-length Petal-width\n", "[[5.1 3.5 1.4 0.2]\n", " [4.9 3. 1.4 0.2]\n", " [4.7 3.2 1.3 0.2]\n", " [4.6 3.1 1.5 0.2]\n", " [5. 3.6 1.4 0.2]\n", " [5.4 3.9 1.7 0.4]\n", " [4.6 3.4 1.4 0.3]\n", " [5. 3.4 1.5 0.2]\n", " [4.4 2.9 1.4 0.2]\n", " [4.9 3.1 1.5 0.1]\n", " [5.4 3.7 1.5 0.2]\n", " [4.8 3.4 1.6 0.2]\n", " [4.8 3. 1.4 0.1]\n", " [4.3 3. 1.1 0.1]\n", " [5.8 4. 1.2 0.2]\n", " [5.7 4.4 1.5 0.4]\n", " [5.4 3.9 1.3 0.4]\n", " [5.1 3.5 1.4 0.3]\n", " [5.7 3.8 1.7 0.3]\n", " [5.1 3.8 1.5 0.3]\n", " [5.4 3.4 1.7 0.2]\n", " [5.1 3.7 1.5 0.4]\n", " [4.6 3.6 1. 0.2]\n", " [5.1 3.3 1.7 0.5]\n", " [4.8 3.4 1.9 0.2]\n", " [5. 3. 1.6 0.2]\n", " [5. 3.4 1.6 0.4]\n", " [5.2 3.5 1.5 0.2]\n", " [5.2 3.4 1.4 0.2]\n", " [4.7 3.2 1.6 0.2]\n", " [4.8 3.1 1.6 0.2]\n", " [5.4 3.4 1.5 0.4]\n", " [5.2 4.1 1.5 0.1]\n", " [5.5 4.2 1.4 0.2]\n", " [4.9 3.1 1.5 0.2]\n", " [5. 3.2 1.2 0.2]\n", " [5.5 3.5 1.3 0.2]\n", " [4.9 3.6 1.4 0.1]\n", " [4.4 3. 1.3 0.2]\n", " [5.1 3.4 1.5 0.2]\n", " [5. 3.5 1.3 0.3]\n", " [4.5 2.3 1.3 0.3]\n", " [4.4 3.2 1.3 0.2]\n", " [5. 3.5 1.6 0.6]\n", " [5.1 3.8 1.9 0.4]\n", " [4.8 3. 1.4 0.3]\n", " [5.1 3.8 1.6 0.2]\n", " [4.6 3.2 1.4 0.2]\n", " [5.3 3.7 1.5 0.2]\n", " [5. 3.3 1.4 0.2]\n", " [7. 3.2 4.7 1.4]\n", " [6.4 3.2 4.5 1.5]\n", " [6.9 3.1 4.9 1.5]\n", " [5.5 2.3 4. 1.3]\n", " [6.5 2.8 4.6 1.5]\n", " [5.7 2.8 4.5 1.3]\n", " [6.3 3.3 4.7 1.6]\n", " [4.9 2.4 3.3 1. ]\n", " [6.6 2.9 4.6 1.3]\n", " [5.2 2.7 3.9 1.4]\n", " [5. 2. 3.5 1. ]\n", " [5.9 3. 4.2 1.5]\n", " [6. 2.2 4. 1. ]\n", " [6.1 2.9 4.7 1.4]\n", " [5.6 2.9 3.6 1.3]\n", " [6.7 3.1 4.4 1.4]\n", " [5.6 3. 4.5 1.5]\n", " [5.8 2.7 4.1 1. ]\n", " [6.2 2.2 4.5 1.5]\n", " [5.6 2.5 3.9 1.1]\n", " [5.9 3.2 4.8 1.8]\n", " [6.1 2.8 4. 1.3]\n", " [6.3 2.5 4.9 1.5]\n", " [6.1 2.8 4.7 1.2]\n", " [6.4 2.9 4.3 1.3]\n", " [6.6 3. 4.4 1.4]\n", " [6.8 2.8 4.8 1.4]\n", " [6.7 3. 5. 1.7]\n", " [6. 2.9 4.5 1.5]\n", " [5.7 2.6 3.5 1. ]\n", " [5.5 2.4 3.8 1.1]\n", " [5.5 2.4 3.7 1. ]\n", " [5.8 2.7 3.9 1.2]\n", " [6. 2.7 5.1 1.6]\n", " [5.4 3. 4.5 1.5]\n", " [6. 3.4 4.5 1.6]\n", " [6.7 3.1 4.7 1.5]\n", " [6.3 2.3 4.4 1.3]\n", " [5.6 3. 4.1 1.3]\n", " [5.5 2.5 4. 1.3]\n", " [5.5 2.6 4.4 1.2]\n", " [6.1 3. 4.6 1.4]\n", " [5.8 2.6 4. 1.2]\n", " [5. 2.3 3.3 1. ]\n", " [5.6 2.7 4.2 1.3]\n", " [5.7 3. 4.2 1.2]\n", " [5.7 2.9 4.2 1.3]\n", " [6.2 2.9 4.3 1.3]\n", " [5.1 2.5 3. 1.1]\n", " [5.7 2.8 4.1 1.3]\n", " [6.3 3.3 6. 2.5]\n", " [5.8 2.7 5.1 1.9]\n", " [7.1 3. 5.9 2.1]\n", " [6.3 2.9 5.6 1.8]\n", " [6.5 3. 5.8 2.2]\n", " [7.6 3. 6.6 2.1]\n", " [4.9 2.5 4.5 1.7]\n", " [7.3 2.9 6.3 1.8]\n", " [6.7 2.5 5.8 1.8]\n", " [7.2 3.6 6.1 2.5]\n", " [6.5 3.2 5.1 2. ]\n", " [6.4 2.7 5.3 1.9]\n", " [6.8 3. 5.5 2.1]\n", " [5.7 2.5 5. 2. ]\n", " [5.8 2.8 5.1 2.4]\n", " [6.4 3.2 5.3 2.3]\n", " [6.5 3. 5.5 1.8]\n", " [7.7 3.8 6.7 2.2]\n", " [7.7 2.6 6.9 2.3]\n", " [6. 2.2 5. 1.5]\n", " [6.9 3.2 5.7 2.3]\n", " [5.6 2.8 4.9 2. ]\n", " [7.7 2.8 6.7 2. ]\n", " [6.3 2.7 4.9 1.8]\n", " [6.7 3.3 5.7 2.1]\n", " [7.2 3.2 6. 1.8]\n", " [6.2 2.8 4.8 1.8]\n", " [6.1 3. 4.9 1.8]\n", " [6.4 2.8 5.6 2.1]\n", " [7.2 3. 5.8 1.6]\n", " [7.4 2.8 6.1 1.9]\n", " [7.9 3.8 6.4 2. ]\n", " [6.4 2.8 5.6 2.2]\n", " [6.3 2.8 5.1 1.5]\n", " [6.1 2.6 5.6 1.4]\n", " [7.7 3. 6.1 2.3]\n", " [6.3 3.4 5.6 2.4]\n", " [6.4 3.1 5.5 1.8]\n", " [6. 3. 4.8 1.8]\n", " [6.9 3.1 5.4 2.1]\n", " [6.7 3.1 5.6 2.4]\n", " [6.9 3.1 5.1 2.3]\n", " [5.8 2.7 5.1 1.9]\n", " [6.8 3.2 5.9 2.3]\n", " [6.7 3.3 5.7 2.5]\n", " [6.7 3. 5.2 2.3]\n", " [6.3 2.5 5. 1.9]\n", " [6.5 3. 5.2 2. ]\n", " [6.2 3.4 5.4 2.3]\n", " [5.9 3. 5.1 1.8]]\n", "class: 0-Iris-Setosa,1-Iris-Versicolour,2-Iris-Virginica\n", "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2\n", " 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n", " 2 2]\n" ] } ] }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split" ], "metadata": { "id": "l3g8jhfEy5gO" }, "execution_count": 16, "outputs": [] }, { "cell_type": "code", "source": [ "x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20)" ], "metadata": { "id": "hlsA9N3jy9FN" }, "execution_count": 17, "outputs": [] }, { "cell_type": "code", "source": [ "knn=KNeighborsClassifier(n_neighbors=3)\n", "knn.fit(x_train,y_train)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 74 }, "id": "ZQUPHPldy_US", "outputId": "727b94c3-a817-4981-87c8-ad1a390e9392" }, "execution_count": 18, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "KNeighborsClassifier(n_neighbors=3)" ], "text/html": [ "
KNeighborsClassifier(n_neighbors=3)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsClassifier(n_neighbors=3)