{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": 22, "metadata": { "id": "_6GYK5xX79-F" }, "outputs": [], "source": [ "# Importing library\n", "# Adding Preliminary Libraries\n", "\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "source": [ "#Importing Dataset\n", "\n", "seed = pd.read_csv('Seed_Data.csv')\n", "seed\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 423 }, "id": "tQ3vlaEK8AuC", "outputId": "950b40ee-741d-49ee-c590-0845286f47d7" }, "execution_count": 23, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " A P C LK WK A_Coef LKG target\n", "0 15.26 14.84 0.8710 5.763 3.312 2.221 5.220 0\n", "1 14.88 14.57 0.8811 5.554 3.333 1.018 4.956 0\n", "2 14.29 14.09 0.9050 5.291 3.337 2.699 4.825 0\n", "3 13.84 13.94 0.8955 5.324 3.379 2.259 4.805 0\n", "4 16.14 14.99 0.9034 5.658 3.562 1.355 5.175 0\n", ".. ... ... ... ... ... ... ... ...\n", "205 12.19 13.20 0.8783 5.137 2.981 3.631 4.870 2\n", "206 11.23 12.88 0.8511 5.140 2.795 4.325 5.003 2\n", "207 13.20 13.66 0.8883 5.236 3.232 8.315 5.056 2\n", "208 11.84 13.21 0.8521 5.175 2.836 3.598 5.044 2\n", "209 12.30 13.34 0.8684 5.243 2.974 5.637 5.063 2\n", "\n", "[210 rows x 8 columns]" ], "text/html": [ "\n", "
\n", " | A | \n", "P | \n", "C | \n", "LK | \n", "WK | \n", "A_Coef | \n", "LKG | \n", "target | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "15.26 | \n", "14.84 | \n", "0.8710 | \n", "5.763 | \n", "3.312 | \n", "2.221 | \n", "5.220 | \n", "0 | \n", "
1 | \n", "14.88 | \n", "14.57 | \n", "0.8811 | \n", "5.554 | \n", "3.333 | \n", "1.018 | \n", "4.956 | \n", "0 | \n", "
2 | \n", "14.29 | \n", "14.09 | \n", "0.9050 | \n", "5.291 | \n", "3.337 | \n", "2.699 | \n", "4.825 | \n", "0 | \n", "
3 | \n", "13.84 | \n", "13.94 | \n", "0.8955 | \n", "5.324 | \n", "3.379 | \n", "2.259 | \n", "4.805 | \n", "0 | \n", "
4 | \n", "16.14 | \n", "14.99 | \n", "0.9034 | \n", "5.658 | \n", "3.562 | \n", "1.355 | \n", "5.175 | \n", "0 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
205 | \n", "12.19 | \n", "13.20 | \n", "0.8783 | \n", "5.137 | \n", "2.981 | \n", "3.631 | \n", "4.870 | \n", "2 | \n", "
206 | \n", "11.23 | \n", "12.88 | \n", "0.8511 | \n", "5.140 | \n", "2.795 | \n", "4.325 | \n", "5.003 | \n", "2 | \n", "
207 | \n", "13.20 | \n", "13.66 | \n", "0.8883 | \n", "5.236 | \n", "3.232 | \n", "8.315 | \n", "5.056 | \n", "2 | \n", "
208 | \n", "11.84 | \n", "13.21 | \n", "0.8521 | \n", "5.175 | \n", "2.836 | \n", "3.598 | \n", "5.044 | \n", "2 | \n", "
209 | \n", "12.30 | \n", "13.34 | \n", "0.8684 | \n", "5.243 | \n", "2.974 | \n", "5.637 | \n", "5.063 | \n", "2 | \n", "
210 rows × 8 columns
\n", "