{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "source": [ "from sklearn.cluster import KMeans\n", "from sklearn.mixture import GaussianMixture\n", "import sklearn.metrics as metrics\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ], "metadata": { "id": "xI_HZaVy1g8q" }, "execution_count": 41, "outputs": [] }, { "cell_type": "code", "source": [ "names = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width', 'Class']" ], "metadata": { "id": "6mxOct3W1pIt" }, "execution_count": 42, "outputs": [] }, { "cell_type": "code", "source": [ "dataset = pd.read_csv(\"8-dataset.csv\", names=names)" ], "metadata": { "id": "c2-pwT011qSt" }, "execution_count": 43, "outputs": [] }, { "cell_type": "code", "source": [ "X = dataset.iloc[:, :-1]\n", "# until last column\n", "label = {'Iris-setosa': 0,'Iris-versicolor': 1, 'Iris-virginica': 2}\n", "y = [label[c] for c in dataset.iloc[:, -1]]" ], "metadata": { "id": "FT3yeHws12Fn" }, "execution_count": 44, "outputs": [] }, { "cell_type": "code", "source": [ "plt.figure(figsize=(14,7))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 52 }, "id": "rRAleziP14Dl", "outputId": "9a0b331e-1fb5-402d-e46d-f91640a20a64" }, "execution_count": 45, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "
" ] }, "metadata": {}, "execution_count": 45 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "colormap=np.array(['red','lime','black'])" ], "metadata": { "id": "u71WSKfv15kw" }, "execution_count": 46, "outputs": [] }, { "cell_type": "code", "source": [ "plt.subplot(1,3,1)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 286 }, "id": "kn7AICTm17Bi", "outputId": "33376e1b-9ab7-4810-8148-3729d0298631" }, "execution_count": 47, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 47 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI8AAAD8CAYAAABO1ff8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAIuklEQVR4nO3df6iddR3A8fdHzQQzhWYgaS1ptkYIzkMNhBI00P2hfxjhQGyxHNIPgiQoDAv7I0wokCxbJaaQ+eOPuNFCoiZCNPMOf6SLZNovS9icsn8kU/j0x/Msr9d7d84+93t3n3t6v2Bwfjzn3O8Db855zjnj+URmIlUct9IL0OplPCozHpUZj8qMR2XGo7Kx8UTE7RGxPyKeXOT+iIhbImJfRDwRERvbL1NDNMkrzx3AJUe4/1JgXf9vO/D9pS9Lq8HYeDLzIeDFI2xyOXBndnYDp0XEGa0WqOE6ocFzvAv4x5zrz/W3PT9/w4jYTvfqxMknn3z++vXrG/x5LdWePXteyMzTj/ZxLeKZWGbuAHYAjEajnJ2dPZZ/XouIiL9VHtfi09Y/gbPmXD+zv01TrkU8M8DV/aeuTcChzHzTW5amz9i3rYi4G7gQWBMRzwFfA94CkJm3ATuBzcA+4GXgU8u1WA3L2Hgyc8uY+xP4bLMVadXwG2aVGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2XGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2UTxRMRl0TEn/v5El9e4P53R8SuiHi0nz+xuf1SNTSTDC45HriVbsbEBmBLRGyYt9lXgXsz8zzgSuB7rReq4ZnkledDwL7MfDYz/wP8jG7exFwJvL2/fCrwr3ZL1FBNEs9isyXm+jpwVX+e5p3A5xd6oojYHhGzETF74MCBwnI1JK0OmLcAd2TmmXQn9L4rIt703Jm5IzNHmTk6/fSjnpOhgZkknklmS2wD7gXIzN8DJwFrWixQwzVJPI8A6yLivRFxIt0B8cy8bf4OXAQQER+gi8f3pSk3ybC214DPAQ8Af6L7VPVURNwYEZf1m10HXBMRjwN3A1v7sQKaYhPN28rMnXQHwnNvu2HO5b3ABW2XpqHzG2aVGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2XGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qajA/ot/lEROyNiKci4qdtl6khGntOwjnjAz5GdwLvRyJipj8P4eFt1gFfAS7IzJci4p3LtWANR6vxAdcAt2bmSwCZub/tMjVErcYHnAOcExG/i4jdEXHJQk/k+IDp0uqA+QRgHXAh3SiBH0bEafM3cnzAdGk1PuA5YCYzX83MvwBP08WkKdZqfMDP6V51iIg1dG9jz7Zbpoao1fiAB4CDEbEX2AV8KTMPLteiNQyxUiMiRqNRzs7Orsjf1htFxJ7MHB3t4/yGWWXGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2XGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRWbPZE/12V0RERsRRn99Oq8/YeObMnrgU2ABsiYgNC2x3CvAF4OHWi9QwtZo9AfAN4Cbg3w3XpwFrMnsiIjYCZ2XmL4/0RM6emC5LPmCOiOOAbwPXjdvW2RPTpcXsiVOADwIPRsRfgU3AjAfN02/Jsycy81BmrsnMtZm5FtgNXJaZnt59yrWaPaH/Q2PHRAJk5k5g57zbblhk2wuXviytBn7DrDLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2XGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRWZPxARHxxYjYGxFPRMRvIuI97ZeqoWk1PuBRYJSZ5wL3A99qvVANT5PxAZm5KzNf7q/upjtXs6Zck/EB82wDfrXQHY4PmC5ND5gj4ipgBNy80P2OD5guk5yHedz4AAAi4mLgeuCjmflKm+VpyJY8PgAgIs4DfkA3NmB/+2VqiFqND7gZeBtwX0Q8FhEzizydpkiT8QGZeXHjdWkV8BtmlRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlxqMy41GZ8ajMeFRmPCozHpUZj8qMR2XGozLjUZnxqMx4VGY8KjMelRmPyoxHZcajMuNRmfGozHhUZjwqMx6VGY/KjEdlrWZPvDUi7unvfzgi1jZfqQan1eyJbcBLmfk+4DvATa0XquFpMnuiv/6T/vL9wEUREe2WqSGa5FS6C82e+PBi22TmaxFxCHgH8MLcjSJiO7C9v/pKRDxZWfSArGHePq5S7688aKLzMLeSmTuAHQARMZuZo2P591ubhn2Abj8qj5vkbWuS2RP/2yYiTgBOBQ5WFqTVo8nsif76J/vLHwd+m5nZbpkaorFvW/0xzOHZE8cDtx+ePQHMZuYM8GPgrojYB7xIF9g4O5aw7qGYhn2A4n6ELxCq8htmlRmPypY9nmn4aWOCfdgaEQf6WWOPRcSnV2KdRxIRt0fE/sW+W4vOLf0+PhERG8c+aWYu2z+6A+xngLOBE4HHgQ3ztvkMcFt/+UrgnuVc0zLtw1bguyu91jH78RFgI/DkIvdvphssHMAm4OFxz7ncrzzT8NPGJPsweJn5EN0n4cVcDtyZnd3AaRFxxpGec7njmWSs9ht+2gAO/7QxFJOOBr+if7m/PyLOWuD+oTvaEegeMDfyC2BtZp4L/JrXX0mn2nLHMw0/bYzdh8w8mK+PA/8RcP4xWltLE41An2u545mGnzYmGQ0+99jgMrop0KvNDHB1/6lrE3AoM58/4iOOwVH+ZuBpuk8s1/e33Ug3gx3gJOA+YB/wB+Dslf5kUtiHbwJP0X0S2wWsX+k1L7APdwPPA6/SHc9sA64Fru3vD7r/9PcM8EdgNO45/XlCZR4wq8x4VGY8KjMelRmPyoxHZcajsv8CbyU7tCqNqr0AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "plt.title('Real')\n", "plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 298 }, "id": "x4eum4Yk19vE", "outputId": "08bf56ae-272b-4be4-8099-c92aa247ff68" }, "execution_count": 48, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 48 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8h0lEQVR4nO3deXxU1fn48c+ZTDJrEiCEgBBIZJNFkEUQwRaxoixuqC1YqTuKiiBqK+LSr/br7q+K1vJVsYIoWEULCIgLKlgKsigCWkAQZJF9DVkn8/z+uMmQyUz2SSbL885rXs09c+69z01fPnM589xzjIiglFKq7rNFOwCllFKRoQldKaXqCU3oSilVT2hCV0qpekITulJK1ROa0JVSqp7QhK5UJRljBhpjdkU7DqUKaUJXDYIxZrsxJssYk2GM2WuMecMY4412XEpFkiZ01ZBcIiJe4CygBzApuuEoFVma0FWDIyJ7gcVYiR1jzDnGmOXGmKPGmHXGmIGFfY0xNxhjfjDGnDDGbDPG3BqVoJUqB03oqsExxrQChgA/GmNaAguAvwBNgHuBOcaY5ILu+4HhQAJwA/BXY0zPmo9aqbJpQlcNyb+MMSeAnViJ+hHgWmChiCwUEb+IfAKsBoYCiMgCEdkqli+Bj4HzohS/UqXShK4akstFJB4YCJwBNAXaAFcXDLccNcYcBQYALQCMMUOMMSuMMYcL3htasJ9StY492gEoVdNE5EtjzBvAs8BK4E0RuaV4P2OMA5gD/AGYKyJ5xph/AaYGw1Wq3PQOXTVUzwMXAsuBS4wxFxljYowxzoL68lZAHOAADgA+Y8wQYHDUIlaqDJrQVYMkIgeAGcBdwGXAA1iJeydwH2ATkRMF7/8TOAJcA8yLSsBKlYPRBS6UUqp+0Dt0pZSqJzShK6VUPaEJXSml6glN6EopVU9ErQ69adOmkpaWFq3TK6VUnbRmzZqDIpIc7r2oJfS0tDRWr14drdMrpVSdZIzZUdJ7OuSilFL1hCZ0pZSqJzShK6VUPaEJXSml6glN6EqpGpeTk8Py5cv59ttvqcz0I9u2bWPp0qUcOXIk0PbLL7+wdOlS9uzZE8lQ65Qyq1yMMalYkxilAAK8IiIvFOszEJgL/FTQ9L6IPBrRSJVS9cKcOXO48cYbAcjPz6dZs2YsWLCATp06lbnv0aNHGTFiBCtWrCAuLo6cnBzGjx/Pnj17ePfdd3E4HGRnZ3PFFVcwffp04uLiqvtyapUyJ+cyxrQAWojIWmNMPLAGa6GA74v0GQjcKyLDy3vi3r17i5YtKtWwbNq0iR49epCVlRVoM8bQrFkzdu3ahd1e+j3mpZdeyuLFi8nNzQ202e12bDZbUJvL5eLOO+/k6aefjvxFRJkxZo2I9A73XplDLiLyi4isLfj9BPAD0DKyISqlGoJXX32VvLy8oDYRITMzk08//bTUfY8cOcLHH38clLgBfD5fSFtWVhZTp06NTNB1SIXG0I0xaUAPrFVeiutXsGL6ImNMlxL2H2OMWW2MWX3gwIGKR6uUqtP27t2Lz+cLaRcRDh06VOq+x44dIyYmptznysjIqNT4fF1W7oRujPFiLcc1QUSOF3t7LdBGRLoDLwL/CncMEXlFRHqLSO/k5LBPriql6rGhQ4fi8XhC2n0+H+edV/ra26mpqXi93nKfq3fv3hjTsFYLLFdCN8bEYiXzt0Tk/eLvi8hxEcko+H0hEGuM0YV0lVJBrrrqKs444wzcbnegzePxMHbsWFq3bl3qvjExMUydOhW32x1I1HFxcSQmJuJ2uwPj7zExMXg8Hl566aXqu5BaqjxVLgaYBvwgIv+vhD7NgX0iIsaYPlgfFKX/+0kp1eDExcWxbNkyXnvtNWbPnk18fDy33XYbl112Wbn2v+KKK/jyyy959tln2bZtG+effz533303GRkZPPPMM3zzzTd0796d++67jw4dOlTz1dQ+5alyGQAsA9YD/oLmB4DWACIy1RhzJzAW8AFZwEQRWV7acbXKRano8/v9GGOqfWjC5/Nhs9mw2fTRl6qqapXLVyJiRKSbiJxV8FooIlNFZGpBn5dEpIuIdBeRc8pK5kqp6Nq2bRuDBw8mLi4Op9PJNddcw+HDhyN+npdeegmXy0VsbCwxMTH069ePzMzMiJ9HWaK2SLTeoSsVHcePH6ddu3YcOnQIv9/6R3dsbCwdO3Zk3bp1EbuLfu+997j66qtD2tu3b8/mzZsjco6GqEp36Eqp+mXmzJlkZmYGkjlAXl4e27dv54svvojYeSZOnBi2fcuWLWzatCli51GnaEJXqoFZv349J0+eDGnPz8+PaKLdt29fie+tWLEiYudRp2hCV6qB6dGjR9ha8JiYGLp0CftMYKW0bFnyA+UDBgyI2HnUKZrQlWpgrrnmGuLj44OeuoyLi6Njx45lPtxTEVOmTAnb3qVLF9q2bRux86hTNKEr1cB4vV5WrVrFZZddhsPhwOv1cv3117NkyZKIli8OHz6cN954I/B0pzGGCy+8kLVr10bsHCqYVrkopVQdolUuSqkgWVlZPPvss/To0YNzzjmHN954A5/Px/Tp0+nXrx89evTg2WefJSsriwULFnDBBRdw5plncv/993Pw4EFWrlzJ5ZdfTpcuXRgzZgzbtm0r97kzMjJ4/PHHOeuss+jfvz9vv/122Em0RIQPPviAgQMH0q1bNx5++OGgBS2K+v7777n22mvp0qULo0aNYv369ZX+21SXw4cPM3nyZLp168agQYOYP39+5E8iIlF59erVS5RSNS8vL0/OPvtscblcgrVojXg8HklLSxOPxxNoc7lc0rJly6B+cXFx0qRJE3G5XGKMEUDsdrvEx8fLDz/8UOa5s7OzpWvXruJ0OoPOfeutt4b0nTx5clA8DodD0tPT5fjx40H9VqxYIW63W2w2mwBis9nE7XbLsmXLIvY3q6ojR45I69atxeFwBF33o48+WuFjAaulhLyqCV2pBmbOnDni9XoDiSUSL2OMXH755WWee/r06UFJuvDldDpl69atgX779+8PSvpFP2See+65oGP27ds3bEw9evSI+N+ush5//PGw1+N0OuXw4cMVOlZpCV2HXJRqYD777DMyMjIiekwRYenSpWX2W7x4cdgaeLvdzvLlp2YMWbVqVdjl47Kysli0aFFQW0nfxVV2vdLqsHDhQrKzs0PaHQ4Ha9asidh5NKEr1cC0bNkSh8MR8eM2bVr2jNmtWrUiNjY2pN0YQ0pKSmA7JSUl6EnWQjabjdTU1KC2Ro0ahT1XQkJCrZkPPTU1NWwseXl5NG/ePGLn0YSuVANz3XXXhV35J9ysizabLWSdz5iYmJC7Z4/Hwx//+Mcyzz1mzJiQhG6MITExkUGDBgXaevbsSevWrUPidDqdjBs3Lqht/PjxQfOrA7jdbu68884y46kpEyZMwOVyBbXZ7XY6dOhA165dI3eiksZiqvulY+hKRc9nn30mKSkp4vV6xe12S/v27WXevHnSvn17cbvd4vV6pVmzZvLuu+/KueeeK06nU+Lj4yU+Pl6mTp0qV111lTidTklISBCn0ymTJ08Wv99frnMvWLBAkpKSJD4+Xtxut3Tu3Fm2bNkS0m/Xrl3Sq1cvcblcEh8fL4mJiTJr1qyQfj6fT8aOHSsOh0MSEhLE4XDITTfdJHl5eVX+O0XSjBkzJCEhQRISEsTlcknfvn1lz549FT4OpYyhax26Ug1Ufn4+GzduDDwlaoxBRNi0aRM5OTl07do1cIe8Y8cODh06ROfOnXE6nYA1V8uuXbto3749CQkJFTq3z+djw4YNuN3uMhei2LZtG0ePHqVr165hx9ULHT58mG3btpGenk5SUlKF4qkpOTk5bNy4kcaNG5Oenl6pY5RWh64JXSlVbfLz8/noo4/44osvaNGiBddeey3NmjUL2/f777/nnXfeIT8/nyuvvJIePXrUcLSVk5GRwTvvvMMPP/xA9+7dufrqqwMfetWhtISuQy5KqWqRnZ0tAwYMCJRIOp1O8Xg8snTp0pC+zz77rLhcLrHb7WKz2cTlcsn9998fhagrZtu2bdKsWbNAKabX65XWrVvL3r17q+2caNmiUqqmTZ06lbVr1wZKJLOzszl58iS//e1vgypYtm/fzoMPPkhWVhY+nw+/309WVhYvvPAC69ati1b45XLrrbdy8ODBQClmRkYGe/bsKXEu+OqmCV0pVS1mzJgRdrm5jIwMNmzYENgu6RH43NxcPvjgg2qLr6p8Ph9LliwJKa/0+XzMnTs3KjFpQldKVYtw9eZgDfMWLYW02+1ha7SNMSElk7VJaYtrR2sxbE3oSqlqccstt4RdSCMlJYVOnToFti+//PKwT3Ta7XZ++9vfVmuMVRETE8Pw4cNDPnTi4uIYNWpUVGLShK6UqhbXX389F198MW63G4fDQXx8PE2aNOGDDz4IurNt0aIFr7zyCi6XC7fbjcvlwul08tRTT5VZ0hhtU6dOJS0tjfj4eOLi4vB6vXTq1Imnn346KvFo2aJSqlqtXbuWZcuWkZKSwmWXXRbyxGShffv2MXfuXPLz87nkkkto1apVDUdaOfn5+SxevJjNmzfTtWtXBg0aVK1DLlqHrpSKuA0bNrB9+3a6d+8emF9l+/btbNiwgbZt2waGVfbv38+qVatISUmhV69eGGM4ceIE//73v3G73fTv3z/sVAQAfr+fFStWcPToUc4999wS522pKSLC2rVr2bt3L7179w6af6amlJbQa+83DkqpWuno0aMMGzaMb7/9FrvdTm5uLldffTXZ2dnMnz+fuLg4fD4fffr04eyzz+bFF18kLi4Ov99Pamoqt9xyCw8++CB2ux0Rwe12s3DhQnr27Bl0nk2bNjF48GCOHDmCMYbc3FyeeOIJJkyYEJXr/uWXXxg8eDA//fQTMTEx5Obmcuedd/L000/XmknA9A5dKVUhV111FfPnzyc3NzfQFhsbi4jg8/kCbYVfFhZti4mJwe/3h3wJmpSUxJ49ewKP9vv9ftLT09m5c2dQX7fbzccff0z//v2r5dpKc+655/L111+Tn58faPN4PEybNo3f/e53NRaHLkGnlIqIkydPhiRzsKaBLZq4wUrkxdvy8/PDVrTk5eXxySefBLZXrlzJkSNHQvpmZWXx8ssvV/UyKmznzp188803QckcrL/HCy+8UOPxlEQTulKq3MIt0hAJfr+fY8eOBbaPHTsWdhhDRDh48GC1xFCaY8eOlVgTX9I6p9GgCV0pVW5NmjShdevW5e5f3rFln8/HwIEDA9v9+vUjLy8vpJ/b7WbEiBHlPn+knHHGGWFnenQ4HFx++eU1Hk9JNKErpcrNGMO0adNwu92BO1an00njxo1JTEwMrIQUGxuLx+OhRYsWgTJFm82G2+2mU6dOQQ8cud1u/vSnP3HaaacF2hITE3nqqadwu92BD4XCqXavu+66mrrcALvdzquvvorb7Q5U5LhcLpo3b859991X4/GURL8UVUpV2JYtW5gyZQqbNm1iwIABjB07Fr/fz0svvcSKFSvo2rUrd911F02bNmXatGksXLiQ1NRUxo0bR5cuXZg1axazZ88mISGBMWPGBK1WVNTy5ct5+eWXOXjwICNGjOAPf/hDtU5NW5bvvvuOF198kR07djB48GDGjBlT4bngq0rr0JVqQESEY8eO4fV6A3fRIsKJEydwOp1BQwcnT57EZrMFPeyTlZVFfn4+Xq+3xmOPpsKJxIovZ1ce+fn5nDhxgoSEhGqfx6VKVS7GmFRjzOfGmO+NMRuNMePD9DHGmCnGmB+NMd8ZY3qGO5ZSqnrNnDmT0047jZSUFBo3bsyDDz7IZ599RseOHUlKSiIhIYEbbriB1atXc84559CoUSMSExMZOnQo69evZ9iwYSQmJtK4cWP69u3Lxo0bo31J1W7btm38+te/JjExkcTERM4//3x27NhRrn1FhKeeeoqkpCRSUlJo1qwZf//736s54jICKu0FtAB6FvweD2wGOhfrMxRYBBjgHGBlWcfVBS6UiqwPP/xQ3G63AIFX4aIRRdscDofY7XYxxgTaYmJiJDY2NqivMUYaNWokhw4divalVZvMzExp1qyZ2Gy2oL9FixYtJDs7u8z9n3322ZC/udvtlhkzZlRbzFRlgQsR+UVE1hb8fgL4AWhZrNtlQOEVrAAaGWNaVOYDRilVOQ8//HDI/OOFi0YUlZOTg8/nC6rxzs/PD6klFxFycnKYMWNG9QYeRe+99x6ZmZlBc5oXDp+UNae5iPD444+H/M0zMzP585//XB3hlqlCgz3GmDSgB7Cy2FstgZ1FtncRmvQxxowxxqw2xqw+cOBABUNVSpWmvMMEFZGVlcV///vfiB+3tti6dWtgRaWisrKy2Lp1a6n75uXllViDvnv37ojEV1HlTujGGC8wB5ggIscrczIReUVEeotI7+Tk5MocQilVgm7dukX8mB6Ph7PPPjvix60tzjrrrLBf/rpcLrp3717qvnFxcSXOCNmxY8eIxFdR5UroxphYrGT+loi8H6bLbiC1yHargjalVA15/PHHQyo0CucWL/qAj9vtxuv1Bq0o5HA4SEhICCoJtNvtJCUlRW2xhpowfPhwUlNTgyp/HA4Hp59+OhdddFGZ+z/99NNh/+bPPPNMxGMtj/JUuRhgGvCDiPy/ErrNA/5QUO1yDnBMRH6JYJxKqTKcc845fPrppwwYMID4+HjOOOMM/vGPf7Bu3TouueQSEhISSE1N5bHHHmPLli2MHj2axo0b06xZM8aPH8+2bdsYP348zZo1o1GjRowePZpVq1ZVqoyvrrDb7Sxfvpybb76ZJk2akJSUxK233sqyZctKnNK3qJEjRzJ79my6deuG1+vl7LPPZv78+QwePLgGog9VZh26MWYAsAxYDxR+c/AA0BpARKYWJP2XgIuBTOAGESm1yFzr0JVSquKqVIcuIl+JiBGRbiJyVsFroYhMFZGpBX1ERO4QkbYicmZZyVwpVXP27NnDbbfdRnp6Or169eLtt99m9+7dDBgwgNjYWBwOB1dccUVItQZYlRyzZ8+md+/epKenc9ttt0XtC7/SrFq1iuHDh9OmTRsuvvhiVq4sXrfRMOiTokrVYwcOHKBLly4cOXIkUJLodrvJyckJmQo2JSWFvXv3BrU9/PDDPPfcc4Fkb7fbadSoERs2bIjKaj3hLF26lCFDhgR9ILndbubNm8cFF1wQxciqh86HrlQD9cILL3D8+PGg+vLMzMyQZA7Wmp6zZs0KbB85coRnnnkmKFH6fD5OnDjB888/X61xV8SECRPC1oKPHx/yUHu9pwldqXrss88+Iycnp9z9582bF/h9/fr1gdkTi8rJyeGzzz6LSHyR8N1334Vt//7778MuplGfaUJXqh5LS0ur0GRR7dq1C/zesmXLkJWJwJpC9/TTT49IfJGQlJQUtr1x48a1Zq3PmqIJXal67N577w2ZbrZo/XlRNpuNSZMmBbbbtm1Lnz59QhZ2cLlc3HPPPZEPtpLuu+++kNJKt9vNxIkToxRR9GhCV6oe69WrFzNmzKBp06Z4PB4cDgcXXHABzz//fNCSai6Xi08++SQkMX7wwQdccMEFOBwOPB4PTZs2Zfr06bXq6dGJEydy11134XK58Hq9uFwuxo4dG/Th1FBolYtSDUB+fj4//fQTjRo1omnTpoC1jufy5ctxOp307h22aCLg4MGDHD16lPT09HI9cBMNJ0+eZPfu3bRs2TJoRaT6RqtclKqHVmxaQafhnUhol0Cvkb3YvGcz+/fv5w9/+APt2rVj8ODBbNiwAYCYmBjatWsXSOYiwueff87MmTOZOXMma9asKfVcTZs2pV27dqUm8z179jBy5EjatWvHsGHD2LRpE7m5ucyaNYsbb7yRhx56iO3bt5e4/8qVKxk3bhy33347X375ZYlfaO7Zs4fHHnuM66+/njfeeIOsrCzAmnemQ4cOpSbz/Px85s+fzy233MJ9993HDz/8UOp11zklzatb3S+dD12pynt5/suCIWgebgxibCa4DWTmzJlB+/r9frnuuuvE4/EIIDabTdxutzzxxBOVjmfNmjVBc4oXvtLT08Xr9QogcXFx4na7ZfHixSH7P/TQQ+J2u8Vms4kxRjwej4wdOzak3/Lly8Xr9YrD4RBAPB6PtG/fXo4cOVJmjHl5eXLRRRcF4rHb7eJyueSNN96o9HVHA6XMh64JXak6yBYfmjxLejkcjqB9v/jii0AyL/pyOp2yc+fOSsXTpk2bcseTnJwsPp8vsO+WLVvE6XSG9HO73fL1118H+vn9fjn99NND+sXFxcm9995bZoyzZ88Oe90ul0uOHz9eqeuOhtISug65KFXHHDh+AP8Jf9kdC+Tk5LBly5bA9gcffBD2MX+bzcaiRYsqFVNF5mLPzs5m/fr1ge2FCxeGHV7Jzs4OqovftWsXv/wSOudfbm4u7777bpnnnT17NidPngxpj42N5csvvyxv+LWaJnSl6hhXnKvsTsX3KbIItMvlCjsWXnyx6IqoSL13fn5+0HmcTmfYeGJiYoKqbhwOR9DKQkUVL80Mp7RZI8uzf12gCV2pOsbr9OJsWf4E1Lhx46CFGEaPHh22Ft3v93PJJZdUKqZevXqVq58xhtTUVDp06BBou+KKK8LeodvtdkaOHBnYbtasGT179gxJ/m63m1tvvbXMc99yyy1hk7rdbufXv/51ueKv7TShK1UHffn5lxhH8F1xTEIMTZKaBLXFxsayZMmSoLbOnTvz7LPP4nQ68Xq9xMfH4/F4mDNnDomJiZWKZ/HixSH7OhwORowYgcvlwuPxEB8fT0pKCnPnzg26o09OTuatt97C7XYTHx+P1+vF6XTy8ssvk56eHnTM2bNnk5qaGojZ5XJx8cUXM27cuDJjHDhwIPfccw9OpzMQT6NGjViwYEGJD1vVNVqHrlQdle/PZ+LfJrJ6zWp+c/5v+J/r/geAd955h48++oiuXbsyfvz4oAeIitq/fz+LFy8mLi6OoUOHEh8fX+WYZsyYwZIlS+jVqxd33HEHNpuNzZs389VXX9G8eXMGDx5cYjzHjh1j0aJF+Hw+hgwZUuIj/fn5+SxZsoSdO3fSp08funbtWqEYd+3axaeffkpiYiJDhgypc8MtpdWha0JXKoqOHTvGp59+is1m48ILLwy7vmUk7GIXX/EVTWjCIAZhJ3xSVbVfaQld/19VKkpmz57NjTfeGLhj9fv9vPPOOwwbNixi5xCE+7mfKUwhFmtYwYOHJSyhE50idh5VO+gdulJRsHPnTjp27Bh4yrGQy+Xi559/DjzRWVUf8iEjGclJTpXrGQxppLGVrRga1myE9YE++q9ULTN79uywi0wYY3j//fcjdp6XeTkomYN1136AA3zLtxE7j6odNKErFQUZGRlBqwgVys/PJyMjI2LnOc7xsO02bGQQufOo2kETulJRMGzYsLDVFTabjSFDhkTsPCMZiZvQ2mtBOJvaMwWuigxN6EpFQZ8+fRg1alRgZkBjDB6Ph7Fjx9KpU+S+rLyZm+lEJzxY57Fjx4WLV3kVJ3WrXE+VTb8UVSpKRIRPPvmEt99+m5iYGEaPHs3AgQMjfp5ccvkn/+RDPqQ5zRnDGDrTOeLnUTVD69CVqsX2sQ8bNpJJLrXfCU5wlKO0pCW2CP3jei97sWOnKZGpqqmqAwcO4Pf7SUlJiXYotZZWuShVC21kI93pThva0IpW9KEPP/JjSL+TnOT3/J5kkulIR1rQgncpe3bB0qxlLZ3pTBpptKQl/enPDso/Y2Kkbd26lb59+9KqVSvatGlDt27dgmZkVOWjd+hKRcFxjpNGGkc4EmizYaMpTdnBjqDx7RGMYBGLyCY70ObGzWIWM4ABFT73AQ7Qlrac4ESgLYYYWtKSrWyt8adIc3JyaNOmTeDuvFCjRo3Yvn17peeXqa/0Dl2pWuYd3iGX3KA2P36yyGIucwNte9kbkswBMsnkSZ6s1LlnMAMfwSWT+eRzhCMsZnGljlkV8+bNIzMzM2Rq3Ly8PGbPnl3j8dRlmtCVioLtbA954Acgiyx+5ufA9h72EEdc2GP8xE+VOvdWtpJFVki7D1/QuWvKzz//THZ2dkj7yZMnS12DVIXShK5UFPShD15CJ+Jy4qQ3p/413YEO5JEX0s+OvVLDLQD96R/23DZsUalN7927N3FxoR9aXq+XPn361Hg8dZkmdKWiYBjDaEtbHDgCbU6cdKc7AxkYaPPi5QEeCNSRg5V4PXiYxKRKnfsqruI0Tgu683fhoj/9gz5MasqvfvUrevbsGfSglcPhID09vdILbjRUmtCVigI7dr7iK+7mblJJpQ1tuJ/7+YRPQibMmsxkXuVVutGNFFL4Lb9lNatJI61S53bgYCUrGcc4WtGKdNJ5iIeYz/wIXFnFGWP4+OOPmTRpEmlpaaSmpjJhwgT+/e9/lzh3ugpPq1yUUqoOqVKVizHmdWPMfmPMhhLeH2iMOWaM+bbg9XBVA1aqrljCEs7lXJrSlP7053M+L/e+n/AJduyYgp844ljFKp7kSdJII4UUxjCGvezlDd6gE51oSlNGMIJNbAp7zJnMJIkkbNhw42YSk9i2bRsjR44kOTmZ9u3b8/LLL3Po0CHuvPNOmjdvTmpqKn/+85/DfjGp6pYy79CNMb8CMoAZIhKy1pMxZiBwr4gMr8iJ9Q5d1XWLWMSVXBlUMeLGzRzmcDEXl7rvQQ6W+GRoLLGBL0Lt2HHixI+fTDIBaz5zL16+5VtO5/TAfjOZyWhGBx9sD8R1jcN3zBcoC3S5XMTFxZGVlUVubm6grV+/fnz66adB632q2qdKd+gishQ4HPGolKrj7ubukPK/TDKZyMQy9+1HvxLfK1rV4sNHBhmBZA7WTIlZZPE4jwftN57xoQf7K+SezA2q8c7KyuLYsWOBZF7YtnLlSlatWlVm7Kr2itSXov2MMeuMMYuMMV0idEylai1B2MzmsO+VNBxSVFUfs/fh4z/8J6it6FOnAcug2PNLJfL7/axZs6ZKcanoikRCXwu0EZHuwIvAv0rqaIwZY4xZbYxZfeDAgQicWqnoMBia0SzseyW1F5VI1R5nNxja0S6oLex0uB0p93/ldrudtLS0KsWloqvKCV1EjotIRsHvC4FYY0zYqdtE5BUR6S0ivZOTS59ZTqnabhKTQhaPcOPmAR4oc9/3KXmZueJlizHEBNWrg1U3fj/3B7WFHXK5B4wz+HhxcXEh5YAxMTEkJSUxePDgMmNXtVeVE7oxprkp+BbFGNOn4JiHqnpcpWq7u7iLyUwmnnicOIknngd5kDu5s8x9z+M87uCOkPaJTOQiLiKu4KcTnfiMzxjFKBwFP6dxGjOZGTIO/wRP8Af+EPSB0LNbT+a+P5fWrVvjcDhwOBxcccUVfPnll3Tr1o24uDhiY2M577zzWLZsGTExMVX/w6ioKU+VyyxgINAU2Ac8AsQCiMhUY8ydwFjAB2QBE0VkeVkn1ioXVV/kkcchDpFEErHWfxoVsoAF2LAxhFNLz53gBDnkBM1TnkUWxzlOMsmlzoeeSy6b2UxrWpNAAmAtpnHgwAE8Hk9glSSAQ4cOYbfbdUbDOkQXuFCqBILwCZ8wnen48XMt1zKUoSHDHlWVQQb3cR/zmBe4k7+Wa8P2/Q//4VVe5TjH+S2/ZQQj+IiPmMxk9rOf8zmfKUwhhxz+zt9Zz3r60pcxjKk1C1UUyszM5M0332TRokWkpqYyduxYOnfW1ZKqorSEjohE5dWrVy9RKtpul9vFIx6h4McjHrlOrhO/+CN2jhNyQrziDZyj8GeUjArp+5Q8JW5xixETiCdN0kL2tYtdPOIRhzgEQZzilCRJkm2yLWJxV9WxY8ekY8eO4na7BZCYmBhxu93y/vvvRzu0Og1YLSXkVZ3LRTVY61nPP/hH0DS2JznJu7zLKiJXj30Xd5FBRkj7LGaxi12B7X3s42EeJpNMBAnEs53tIfv68HGSk+SQA0A22RzhCPdyb8TirqopU6awY8cOMjOtGvr8/HwyMzO56aabyMsLnUFSVZ0mdNVgLWZxyEIPYCXHhSyM2Hk+5MMS35vGtMDvn/N5iXOfl4cff1QWqCjJu+++G3Y6AZ/Pp8vLVRNN6KrBiic+7JeYscRWuU68qOKljUUlkRQUT1XH7ks7V01LSEgI2+7z+Up8T1WNJnTVYF3JlWHbbdj4Hb+L2Hnu4Z4SzzOGMYHtC7mQGMpfNli8rwsXt3BL5YKsBnfddVdQRQ2AzWajffv2tGvXroS9VFVoQlcNVlOaMoc5ePGSUPDjwcNbvMVpnBax84xjHEMZGtRmw8Y/+WfQEEsccSxmMUkkBeJx4uQe7glZuLkb3ehLX9y4SSABFy4u5EIe4ZGIxV1VV111FbfeeitOp5OEhAS8Xi9paWnMnTu37J1VpWjZomrwsshiCUvw42cQg4JWB4qkTWxiGtNIJpnxjC9xvDyPPD7nc05ykvM5n0Y0wo+fqUxlK1sZxajAykLf8i1b2MKZnMkZnFEtcVfV7t27+c9//kPz5s0599xzsdn0PrIqSitb1OVAVJ0nCP/m32xgA+1pz/mcX+qDN8W5cDGMYUFtP/ETt3M7RznKOMZxDdeQSSZP8iRb2cqlXMrv+B1+/ExhCl/zNX3pyzjGYcPGLGbxIR/SlrY8wAM4cRJLLO1pTyKJ+PARRxz72MdCFmLDxnCGk0QS2WRzkINkkslxjtOIRtiwcTu3h8R+VsFPbdayZUuuuuqqaIfRIOgduqrTMsjgN/yGjWwkn3xiiCGVVJaytNIP2fyRP/IMzwS1NaYxxziGn1PT0CaTzHGOB0oHwZogy4uXgxwMtNmwcTVXM5e52LARQww2bIxlLM/zPDHEYDD48HEP9/A8z2PDRj75+PEziUk8jK4boyz6pKiqt8Yxjld5NSipxhLLpVzKe7xX4eMd4xiNaBTBCKvOjZtP+bTUOdRVw1GlBS6Uqs1mMjMomYM1Bj2PeWFrzMtyH/dFKrSIySKLN3gj2mGoOkATuqrTiq7uU5Qff+Bpy4oovgJRbVC4QpFSZdGEruq0S7gkpB7bYOhP/0rNfPgoj0YqtIjx4IloXbyqvzShqzrtOZ4jhZRAqaEbN41pzKu8WqnjpZPOYEIXeQj3wE9JHxjFa8YButIVL97Afi5cDGUobtwYDDZsuHBxCZfgwhU4hgcPwxgWUseuVDhatqjqtNM4jc1sZhazWM1qutCF0Yyu0hebi1nMDGYwmclkkslwhvMqr7KZzdzHffzMzwxiEE/wBMc5zj3cwzrW0Z3uPMdzJJDAJCaxhCW0pjXP8Ayd6czHfMyHfEgTmnAd19GWtqxgBf/kn8QQwyhG0ZOe/Jf/8iZvcoITXMZlDGJQxKfzVfWTVrmoBk8QtrENQWhL20Dy3M1ujnOcDnQo9ZH84xznZ34OWlAinHzy2cxmEkigJS0rHOd+9nOAA7SnfZUm8VJ1m1a5KFWC9aznDM7gTM6kO91pRzsWs5j+9Kcd7ehDH1rQgvnMD9nXj5/xjCeFFM7lXFJI4W7uDqpVLzSPeTSnOX3oQzvaMYAB7GVvuWI8xjGGMYw2tKEf/Ugmmdd4rcrXruofvUNXDdZJTpJKKkc4EtRuw4bBkE9+oM2Nm1WsojOnVtv5C3/hCZ4gk8ygfpOZHLRQ9AY20Je+Qf3s2OlEJ9axrszhlCEM4XM+DyrPdONmPvMZxKCKX7iq0/QOXakw3uf9sGWPfvxByRwghxxe5MWgtr/y16AkDZBJJn/lr0FtL/JiSK28Dx/b2MZa1pYa4x728AVfhOyfSSZP83Sp+6qGRxO6arB+4ReyCV2AIZx88oNWDhIk5M6+0GEOB21vZ3vIBwRYd+m/8Eup593HvhLHy3eys4yoVUOjCV01WP3ohwNHufoWTk9byGDoRrewfbvTPWj7Qi7EhSukXzbZgVkTS9KRjmE/DGKJ5QIuKE/oqgHRhK4arAEMoB/9glb5ceGiBS2CptCNI45mNONmbg7afwpTAnXkYCV5N25e4IWgfrdwC8kkB91pe/BwB3fQnOalxujGzV/4S1CMduwkkMCf+FPFL1rVa5rQVYNlMCxgAf/L/9KVrnSmM//D/7CVrfwf/8fZnE172jOBCaxhTUhJ4q/4FctYxqVcyumczmVcxld8xXmcF9QvkUTWspYJTKA97Tmbs3mFV3iWZ8sV5wQm8A7vcB7n0Za23MzNfMu3lSp9VPWbVrkopVQdolUuqtp9wReczdm4cdOe9sxkZrRDCrGDHVzFVcQTTzLJTGISe9nLbdxGIxqRSCI3ciOHOBTtUJWqFL1DV1W2jGVczMUh9djP8EzYVXai4QhH6EhHDnEo8OCPEyd27OQW/ID1ZWMb2vA931dqci+lqpveoatqdT/3h63HfpAHw1ZoRMM0ppFBRtBTnNlkk0FGIJmDNR3vPvYxF13IWNU9mtBVlX3P92HbM8kssVa7pq1kZbnnFD/BCdaxrpojUiryNKGrKksnPWx7HHEkkljD0YTXla44cZarrxcvHehQzREpFXma0FWVPcqjQXXSYI2h38M9tWYcegxjQp64jCv4sRX5z8CGDQ8erkJXqVd1jyZ0VWXDGc5rvMZpnEYMMSSSyAM8wEM8FO3QAlrQgqUspQ99iCGGWGK5kiv5hm+4iIuwF/ycz/msYEXYJzuVqu20ykVFjCBkk40DR9Bdb22TQw4xxAStLJRHHoLoPOOq1tMqF1UjDAYXrgoncz9+JjOZFFJIIokxjClx0qx5zOMMziCRRM7jPDayMWy/oxzlCZ7g1/ya0YxmDWsC7zlwhCwTF0tsUDL/nM+5mqsZxCD+xt/IIot1rOMGbuDX/JrHeEzr1VXtIyKlvoDXgf3AhhLeN8AU4EfgO6BnWccUEXr16iVKiYh0kS5CsZ8kSZI8yQvq94Q8EdLPiJHlsjyo30E5KKmSKk5xCoLYxCYuccksmVWueJ6Sp8Qt7sA53OKWNEkTl7jEJjZBEKc4pbk0l1/kl4j9HZQqD2C1lJBXy3Mr9QZwcSnvDwHaF7zGAH+v5GeLaoAWsjDsXfYhDvEkTwa2/fh5kAdD+gnCtVwb1PYMz7Cf/YG7fD9+sshiLGPDzn9e/LyP8EhQXX0mmWxnO1lkBerYs8nmEIf4X/63/BerVDUrM6GLyFIoNsFzsMuAGQUfHiuARsaYFpEKUNVvb/Jmie+9x3uB3zewocSHlH7ip6DtecwLWRACrDnNS6qZL7Sc5eUeR88jjw/5sFx9laoJkRhDbwlBM+3vKmgLYYwZY4xZbYxZfeDAgQicWtV1ySSX+F4TmgR+b0rTEvsVHw8vul9ReeTRmMalxtOYxgjlLxQo63hK1aQa/VJURF4Rkd4i0js5ueT/kFXD8TAPl/jeYzwW+P00TqMF4f/hN4IRQdsTmRg0nzlYSb8nPWlN61LjOZdzaUzjkHU+bdhCPjg8eJjIxFKPp1RNikRC3w2kFtluVdCmVJma0pTXeT0kgT7AA/Snf1DbClaEzEnehS4hMztewRVMZCJOnCSSiAcPXenKHOaUGY8NG5/wCWmk4cVLAgm4cPEMz9CTnrhxk0giTpyMZSy/5/eVvHKlIq9cdejGmDTgQxHpGua9YcCdwFCgLzBFRPqUdUytQ1dF5ZLLNKaRRRY3c3NI4i5qEYtYy1ou4ZISl4ED6wvONayhBS04kzMrFI8grGY1xzjGOZyDFy8AG9nIbnbTgx6lDhcpVV1Kq0MvM6EbY2YBA4GmwD7gEbCe5xaRqcYYA7yEVQmTCdwgImVmak3oSilVcaUldHu4xqJEZFQZ7wtwRyVjU0opFSH6pKhSStUTmtCVUqqe0ISulFL1hCZ0pZSqJzShK6VUPaEJXSml6glN6EopVU9oQldKqXpCE7pSStUTmtCVUqqe0ISulFL1hCZ0pZSqJzShK6VUPaEJXSml6glN6EopVU9oQldKqXpCE7pSStUTmtCVUqqe0ISulFL1hCZ0pZSqJzShK6VUPaEJXSml6glN6EopVU9oQi+vr7+GK6+Es86C8eNh165oR6SUUkHs0Q6gTnj/fRg9GrKyQAS+/x7efBPWrIH09GhHp5RSgN6hl83vh9tvh8xMK5kD5OXBsWPw4IPRjU0ppYrQhF6W3bvh+PHQdr8fliyp+XiUUqoEmtDLkphoJe9wkpNrNhallCqFJvSyJCTApZeCwxHc7nbDH/8YnZiUUioMTejl8frrcMEF4HRad+xOJ0ycCL//fbQjU0qpAK1yKQ+vFxYssEoVd+2CTp2sxK6UUrWIJvSKaNXKehXKybFKGjdsgI4d4eqrweWKXnxKqQatXAndGHMx8AIQA7wmIk8We/964Blgd0HTSyLyWgTjrH327YNzzoGDByEjw7qLv/9+WLECWreOdnRKqQaozDF0Y0wM8DdgCNAZGGWM6Rym6zsiclbBq34nc4C777aGXzIyrO2MDNi/H267LbpxKaUarPJ8KdoH+FFEtolILjAbuKx6w6oD5s4Fny+4LT8fPv645DJHpZSqRuVJ6C2BnUW2dxW0FXelMeY7Y8x7xpjUcAcyxowxxqw2xqw+cOBAJcKtRWwl/OmMqdk4lFKqQKTKFucDaSLSDfgEmB6uk4i8IiK9RaR3cl1/KOfqqyEuLrjNbodLLik52SulVDUqT+bZDRS9427FqS8/ARCRQyKSU7D5GtArMuHVYs89B+3aQXy8lcjj4yE1Ff7+92hHppRqoMpT5bIKaG+MScdK5COBa4p2MMa0EJFfCjYvBX6IaJS1UePG8N131ph5Ydni0KFWcldKqSgoM/uIiM8YcyewGKts8XUR2WiMeRRYLSLzgLuMMZcCPuAwcH01xlx5mZnwn/9YteJ9+0JMTPh++fnwl7/Ajh3WE6Fdu1rt338PP/9szYnevLm1f+fO1rh5hw6lJ/OMDOvc8fHQp48OyyilIs5I4ZSwNax3796yevXqmjvhO+/AzTdbiVTk1NOfPXoE93v77dBH+jt3hkaN4NtvITYWsrPhppusGvR586x5XnJzYdAgePfd0IeL/vEPuPNOK+H7/dbd/UcfWcdVSqkKMMasEZHeYd9rEAl90yYrcWdlBbc3aQJ79pyaeCs/v+S7bJstuBwxNtb6YChauuh0wo03wt/+dqrtm2+gf//Qc7doATt3lvyvBKWUCqO0hN4w/t0/bZq1KEVxPh8sXnxq+/HHSz5G8dryvLzQOvTsbOtuvOiH5P/9n3X3XlxGBnz5ZdmxK6VUOTWMhH7wYGjyBeuO/PDhU9s//1z1c2VnByf/Awes84Rz5EjVz6eUUgUaRkIfPtwaMy8uP98a9y40cWLVz9WrV/AwymWXgccT2i8vD847r+rnU0qpAg0joV96qZVoiyZWjwfGjQueSKtTJ6uCJRyn81Sidjqt8Xev99TDRbGx1nbxOvTf/c46rtt9qs3thsmToVmzKl+aUkoVahhF03a7VS/+1ltWFYvXC2PGwMUXh/b95hvrTn3qVOsuuksX+OADq+Tx+edhyxYYOBDuuMMaXpkyBb7+2vogmDAB0tODj+dwwLJlMH06/POf1gfBbbdZC2YopVQENYwql6KOHrXuqoveMR8+bA2/FJ2OwOezEnpZ85uLWMne7dZ5XJRS1U6rXMCaHdHrtWrAPR5o2RJmzLDuoJOSrOEPux1eecWqMfd6rYeAzjwTli8Pf8xXX4WUFKtGPSkJ/vrX4AoXpZSqQQ3jDn3TJjjjjPL3j4sLLjX0eKyhmPbtT7W9+aY1dJKZearN7YYnn7TG5pVSqhroHfrdd1esf/G68Zwca/y8qEceCU7mYG0/9liFw1NKqUhoGAl906aq7e/zwfr1wW27doXve+BA+Jp3pZSqZg0jofeq4my+cXHQr19wW4cO4fumpuqMi0qpqGgYCf355ys2u6HTeep3Y6xKl7vuCu7z9NOhFTBuNzz1VKXDVEqpqmgYCf2002DlylMPERkDvXtbbUlJp/rFx8MXX8BDD1mTZ3k8MGyYVWfestiqe0OHwvvvW/Xnbrc1c+Jbb8GoUTV1VUopFaRhVLkopVQ9UX+qXL76Ci66CE4/HUaOhB9KWBhp7VprUYrYWOuue9IkWLUKEhOtu3NjrCc6N2ywhmIK24yx5jdv2jS47cUXrTH0wm2bDf70J1i3DkaMsOK55BLrHOEcOQL332+VPfbqZT01qvXqSqkIqzt36P/6l7XwRGGpoM1mDXV89RV0736q33ffWcMgNXFdMTHWzIoip8ba586F3/zmVJ+MDOjWzZp3Padg2VWPB0aP1vVHlVIVVvfv0EWsh3WK1n37/Vay/OMfg/vedFPN3f3m5586V+EUAMUfKpo+HfbtO5XMAU6ehDfeiMx0vUopVaBuJPSjR2H//vDvrVgRvL1xY7WHU6pNm4Lr0D/9NPQBJLCGg77+uubiUkrVe3UjoXs8JS/VVnwK2oSE6o+nNPHxwbGmpYWvSxexqm+UUipC6kZCj4uzhlLC1X1PmhTc9vDDNRdXcW63Va9edNbFsWNPzZleKCbGSubFH1ZSSqkqqBsJHeC556zKFofDugt2u61KkxtuCO53++3WXOdFk2rTpsFfVBZq2za0rWhdeqHGjUPbPB5r/N7lsuJxOq1Y/vzn4H4dOsCcOda/JDweq9/ZZ8OSJTrdrlIqoupOlUuho0etipG0tOA5zYvLzLTGr08/3SphBGts+6mnoHlz646/0NVXW19Uvv/+qadEn3wSvv3Wesq0eXOr7V//goUL4Z57oGNHqy0jA3bssB75L224x++HzZut5F/8ISWllCqn0qpc6l5CLy4zE2bPtp76POMMuO46a1Wg8vrmG2sVo9xcK7H37w8vvGDNppidDX36wKJF4dckVUqpGlZ/E/r+/dbwxaFD1h22y2WNV//739bScWV54glrutucHOtLSpfLuus/eDC074ED1tCNUkpFUd2vQy/J/fdbwy8nT1rbWVlw/DjceGPZ++7YAY8+au1T+HBQZmb4ZA7WnbtSStVidTuh/+tfoXOPi1iP/mdklL7vggUV+1Jy8+YKh6eUUjWpbif02Njw7caUXLdeyOGo2JS6FemrlFJRULez1A03BM9dDtZDPBdeGFqzXtzll1tDLeV17rkVDk8ppWpS3U7ojzxiVaF4PKfqwdPT4fXXy943Kcmav9zlsipYCmvEwyVupxM+/zzy8SulVATV7bXSXC5rQYqvv7amsj39dBg0qPzDI1dcYX2p+uGHkJdnLVqRkgI//mgtVHHoENxxh1V3rpRStVzdLltUSqkGpspli8aYi40xm4wxPxpj7g/zvsMY807B+yuNMWlVjFkppVQFlZnQjTExwN+AIUBnYJQxpnOxbjcBR0SkHfBXQFdKVkqpGlaeO/Q+wI8isk1EcoHZwGXF+lwGTC/4/T3gAmN05imllKpJ5UnoLYGdRbZ3FbSF7SMiPuAYEDJtoTFmjDFmtTFm9YEDByoXsVJKqbBqtGxRRF4Rkd4i0js5ObkmT62UUvVeecoWdwOpRbZbFbSF67PLGGMHEoFDpR10zZo1B40xOyoQa1FNgRImXamT9Hpqr/p0LVC/rqc+XQuU/3ralPRGeRL6KqC9MSYdK3GPBK4p1mcecB3wH+AqYImUUQ8pIpW+RTfGrC6pbKcu0uupverTtUD9up76dC0QmespM6GLiM8YcyewGIgBXheRjcaYR4HVIjIPmAa8aYz5ETiMlfSVUkrVoHI9KSoiC4GFxdoeLvJ7NnB1ZENTSilVEXV1LpdXoh1AhOn11F716Vqgfl1PfboWiMD1RO3Rf6WUUpFVV+/QlVJKFaMJXSml6ok6ldCNMa8bY/YbYzZEO5ZIMMakGmM+N8Z8b4zZaIwZH+2YKssY4zTGfG2MWVdwLf8T7ZiqyhgTY4z5xhjzYbRjqSpjzHZjzHpjzLfGmDo/zakxppEx5j1jzH+NMT8YY/pFO6bKMsZ0LPj/pfB13BgzoVLHqktj6MaYXwEZwAwR6RrteKrKGNMCaCEia40x8cAa4HIR+T7KoVVYwdw9HhHJMMbEAl8B40VkRZRDqzRjzESgN5AgIsOjHU9VGGO2A71FpF48iGOMmQ4sE5HXjDFxgFtEjkY5rCormAxxN9BXRCr84GWdukMXkaVYde71goj8IiJrC34/AfxA6Dw5dYJYClfmji141Z27hWKMMa2AYcBr0Y5FBTPGJAK/wnr+BRHJrQ/JvMAFwNbKJHOoYwm9PiuYQ74HsDLKoVRawRDFt8B+4BMRqbPXAjwP/BGowMKztZoAHxtj1hhjxkQ7mCpKBw4A/ygYEnvNGOOJdlARMhKYVdmdNaHXAsYYLzAHmCAix6MdT2WJSL6InIU1308fY0ydHBYzxgwH9ovImmjHEkEDRKQn1roGdxQMX9ZVdqAn8HcR6QGcBEIW3qlrCoaOLgXerewxNKFHWcF48xzgLRF5P9rxRELBP38/By6OciiV1R+4tGDceTYwyBgzM7ohVY2I7C743/3AB1jrHNRVu4BdRf4F+B5Wgq/rhgBrRWRfZQ+gCT2KCr5InAb8ICL/L9rxVIUxJtkY06jgdxdwIfDfqAZVSSIySURaiUga1j+Bl4jItVEOq9KMMZ6CL90pGJoYDNTZSjER2QvsNMZ0LGi6AKhzhQRhjKIKwy1QzrlcagtjzCxgINDUGLMLeEREpkU3qirpD4wG1heMPQM8UDB3Tl3TAphe8C29DfiniNT5cr96IgX4oGARMTvwtoh8FN2Qqmwc8FbBMMU24IYox1MlBR+0FwK3Vuk4dalsUSmlVMl0yEUppeoJTehKKVVPaEJXSql6QhO6UkrVE5rQlVKqntCErpRS9YQmdKWUqif+P17U0DnRq8gyAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "model=KMeans(n_clusters=3, random_state=0).fit(X)\n", "plt.subplot(1,3,2)\n", "plt.title('KMeans')\n", "plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[model.labels_])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 353 }, "id": "hMZXD8H62AXy", "outputId": "06a14ccf-0bfb-47ab-accf-134bb980ec87" }, "execution_count": 49, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.9/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 49 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAEICAYAAAB1duezAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAklUlEQVR4nO2deXyU1b3/39+ZLLMlgQiERWSHgCCLuKCC4IIiVbSbyrWA+qti63X51duft3r1tr33/vzd1gJuYKu2dWu1WtCLIC2K1aKggCwCgqiAUhaDErKRZeb7++NMYpJ5niSTTGaG5LzzOi9mnufMeb5DPnmec77ne75HVBWLxQlPqg2wpC9WHBZXrDgsrlhxWFyx4rC4YsVhccWKw+JKpxCHiOwWkQvqvb9KRL4SkXNFREXk/Ub1u4lIlYjsTrqxaUSnEEd9RGQ28DAwHdgTPRwQkZH1qs0EPk22belGpxKHiNwI3A9cpKpv1zv1FDC73vtZwJONPttbRF4UkS9E5FMRuaXeudNF5B0ROSIi+0XkIRHJqndeRWSuiHwUrfOwiEj03GAR+ZuIFItIkYg81x7fvVWoaocvwG7gReAgMLre8f6ARv/9DPACI4APgQuA3dF6HmA9cA+QBQwEPsGIDOBU4EwgI9rWduC2etdRYCnQBTgJ+AK4OHruD8Bd0Wv4gHNS/f9VWzrTneNCYA2wxeHc58AOjCBmYe4k9TkN6K6qP1PVKlX9BPgNcBWAqq5X1TWqWqOqu4FHgXMbtXGfqh5R1b3AKmBM9Hg10A/orarHVPXvbfyeCaMzieMmYCjwWO0tvRFPAnOAq4kVRz+gd/SRcEREjgA/AQoARGSoiCwVkQMichT4L6BbozYO1HtdDoSir38MCPCuiGwVketa+wUTTWcSx0HgfGAi8IjD+RcxndRPon/d9fkM+FRVu9QrOap6SfT8QsyjaIiq5mKE4yTAGFT1gKp+X1V7AzcCj4jI4Li/XTvQmcSBqv4DI5CLRWReo3NlwHnA/3L46LtAiYj8HxHxi4hXREaKyGnR8znAUaBURAoxd6kWISLfEZETo2+/wvRPInF9sXaiU4kDIHpXOA/4NvB/G51bp6ofO3wmDHwD00/4FCgCHgPyolXuwAx/SzB9kXhGHKcBa0WkFHgZuDXap0k5ojbYx+JCp7tzWFqOFYfFFSsOiytWHBZXMlJ14W7dumn//v1TdXlLPdavX1+kqt0bH0+ZOPr378+6detSdXlLPURkj9Nx+1ixuGLFYXHFisPiihWHxZWUdUgtLSMcDrN+/XpEhHHjxuH1ejl48CDbt2+nvLyc/Px8xo8fT0ZGO/wqWxBF1RcTnLIN2IqZGGpcZzJQDGyMlnuaa/fUU09VS9P87W9/027dumlOTo7m5ORoQUGBTp8+XTMzM1VEFNCMjAzt2rWrrlixotXXAdap0+/e6aA2/MX3AsZFX+cAO4ERGiuOpc21pVYcLaaoqEhDoZBipvCbLYFAQPft29eqa7mJo9k+h6ruV9UN0dclmPjIPq2+VVlaxHPPPUck0vKwjnA4zFNPNQ5gaxtxdUhFpD8wFljrcHqCiGwSkeUicrLL528QkXUisu6LL76I39pORFFRERUVFS2uX1lZyaFDhxJqQ4vFISIhTCjdbap6tNHpDUA/VR0NPAgscWpDVX+tquNVdXz37jHeWks9Jk+eTCAQaHH9UCjEBRdc0HzFOGiROEQkEyOMZ1T1z43Pq+pRVS2Nvl4GZIpI4wBbSxxMnDiRyZMnEwwG6475/X68Xm9MXZ/Px2mnncZFF12UUBuaFUc0UvtxYLuq/sqlTs96i3ROj7Z7OJGGdjZEhCVLlvDQQw8xadIkzj33XB599FE+/PBD5s6dy8CBA+nZsyfjxo3jgQceYMWKFXg8iXVbNRsmKCLnAG9h1nvU9pB+glmcg6ouEpGbMUG1NUAF8L+14YqyGMaPH6924g2IREDEFAdqamrax4dRDxFZr6rjY044DWGSUTr9UPbDD1WnTFH1eFSzs1VnzVI9cqTu9MyZM9Xj8SigXq9X586d226m0Fo/R3uVTi2OoiLVrl1VRcyvAFSzslRPO001EtGZM2c6+jJuu+22djHHTRx2biUVPPEEHDtmZFFLVRVs2wbvvssf//hHx489/PDDSTLQYMWRCjZtAicfhgjHNm92dX5VV1e3s2ENseJIBePGgd8fe1wV39ixrqOOrKwsx+PthRVHKrjuOggGob4IsrNh7FgYP57rrnNeS/2jH/0oSQZGceqIJKN06g6pquonn6heeqkZqeTkqP7wh6qlpXWnf/CDH2hGRoYCmpmZqXfeeWe7mYJLhzRlyyGtnyN9cPNz2GCfFFFWVsaDDz7I448/zuHDhwmHw4DxjAaDQaZOncodd9zBqlWr+N3vfgfA0KFD2blzJ6rKsGHD2LVrFzU1NcyaNYu5c+fi8/kcr6WqLFmyhAULFvDll19y+eWXc/vtt9O1a9emjXS6nSSjdObHyrFjx3TUqFGalZXVZIyG1+tVn8/XbCyH3+/XCRMmaE1NjeP17rrrLg0Gg3X1s7OzdcCAAXr06FFVtX6OtOJPf/oTH3/8MVVVVU3WC4fDHDt2rNn2Kioq2LJlC8uWLYs598UXX3D//fdTVlZWd6yyspIDBw7wm9/8psl2rThSwIoVKygvL09om6WlpaxatSrm+Hvvvec4BK6oqGD58uVNtmnFkQL69u2b8Mk0n89H7969Y44XFBQ4OtU8Hg99+/ZtulGnZ00ySmfuc3z88ccaCARaHB/akhIMBvXAgQMx14pEIjpixAj1er0xMacbNmxQVdvnSCsGDhzICy+8QH5+vmPwjoiQnZ3NzJkz6dOnD8FgEJ/Ph9frxe/31wX9ZGdnEwqF6NmzJ8uWLaOgoMCxrRUrVjBmzBj8fj85OTnk5eXx+OOPM3bs2CbttH6OFBIOh9myZQvl5eVkZGTUzZ1kZWUxZMgQunTpgqqydetWRIThw4ezfft2IpEII0aMYOfOnVRXVzNy5MgWBfp88sknHDlyhJEjRzboh7j5Oaw40pSysjKee+45tm7dyvDhw1FVPvzwQ0aNGsV3v/vdFsWX7tmzh2effZYjR44wffp0Jk6ciFMKVhvscxzx6aefao8ePerWrURzpyugoVBIe/XqpXv37m2yjeeff179fn+dLyUYDOqVV16p4XA4pi422Of44cILL6yLAnMqXq9XL7vsMtfPl5SUOHZ4g8GgvvTSSzH13cRhO6RpRjgc5vXXX29yQVM4HGbZsmXmr9uBVatWOQ6Vy8rKeOaZZ1psixVHmiEijv2Cxni9Xtd6TflQMjMzW2yLFUea4fF4uOyyy5r9BX/rW99yPT9lyhTH48FgkDlz5rTcGKdnTTKK7XO4c/DgQR0yZIjm5ORoVlaWejwe9Xg8mpmZqaFQSAsLC7WoqKjJNlauXKnBYFCDwaD6fD71+/16++23ayQSiamLS5/DTtmnIT169GD79u2sWLGCnTt3MmLECMLhMDt27GD48OFceOGFzfo1zj//fPbt28fixYspKSlh6tSpDBs2LC47rJ8jzdi+fTvbtm2jrKwMVcXv91NZWUnv3r0544wzWLt2LZFIhIkTJ7rGbwDs27eP999/n759+zJ69Ogmr2n9HGnO0aNHdfLkya4xHrVD20AgoLm5uZqbm6uvvPJKTDvhcFhvuukm9fl8mpeXp8FgUE899VT94osvXK+N9XOkN9/73veaDf5pXAKBgO7fv79BO7/+9a9jfByZmZl60UUXuV7bTRx2tJIGVFdX8/zzzzcb/NOYSCQSswBqwYIFMbEi1dXVrFq1ii+//DKu9q040oCqqipqamri/lxlZSVHjhxpcKy4uNixrtfrpbS0NK72rTjSgGAwyPDhw+P+XCAQYOrUqQ2OTZ8+3dFHkp+f33xwT2OcnjXJKLbP0ZB33nlHg8Fg3QRbc6V2Iq2x32L//v3as2dP9fv9dfMwgUCgyWyDWD9HenPmmWeyZcsWFixYwOuvv05JSUnduczMTAYMGMD48ePZunUrkUiE2bNnc8UVV8S40Hv27MnWrVtZtGgRb7zxBoMHD+aWW26hsLAwbpusnyMVlJSYZC01NZR6vSBCTU0NeXl5LZpXcUNVKS4uJhQK1T1aKisrqaqqIicnx/Vzbn6OlqR96isiq0RkW3RT3Fsd6oiIPCAiu0Rks4iMi+9rdRLWrYPRo6FLFzQnh5quXfm33Fy65uSQn59PQUFBq9NFPv300/Tu3ZsePXrQtWtX7rjjDr7zne+Qm5tLfn4+p5xyCu+99158jTo9a+oXWpak9hJgOWaj3TOBtc212+n6HJ99phoKaV2yFtCfgAYcfBcvv/xyXE0vXbo0xrdROx9T/1goFHIMEqKdk9TOAJ6MXmsN0EVEesUn0w7OwoUmQUuUKmABZt/y+pSXl3PvvffG1fS9994b49uIRCIxMSFVVVU88ojTZtzOJCpJbR/Mlt61fI5DluNOnaR227YG4jgChF2q7tnjuHGSK7t3725RvaqqKrZu3dridhOVpLZFaGdOUjthQoOELScAbiHCo0aNiqvp5ibWavH7/UyYMKHlDTs9axoXIBNYgUkh6XT+UeDqeu93AL2aarPT9TkOH1bt3r1BkriFLn2Ot99+O66m16xZE9Pn8Hq9dfk9iPZBunXr5hgHQht2TRDgSWB+E3Wm07BD+m5z7XY6caiq7t2rOnOmaiCgEa9Xq0T0pyIa9Hg0KytLzzrrLF29enWrmn777bf1nHPO0ZycHC0sLNSnnnpKf/7zn2vv3r01Ly9Pr7rqKt2zZ4/jZ93EkagktQI8BFyM6WNdq6pNOjE6tZ8jzbDxHOnEq6+anKNZWaoiWpOZqS8NH65DBgzQ4cOH6/z587W6utr141VVVXr//fdrYWGhDh48WO+55x4tKSlptTnYeI404be/VfX76/odtaUM9Jl6/Y7LL7/c8eORSESnTZvWoI/h8/l09OjRTQqqKaw40oHqatX8/Bhh1BfI0HoC2bhxY0wTa9eubZClp7aEQiF94YUXWmWWmzjslH0y+cc/TOZiF8LAGdHXqsqaNWti6qxdu9Yx9qO0tJTVq1cnyFCDFUcyyc83uyS4oBjvIZiFSSeeeGJMnT59+jhm6vH7/Zx00kkJMtRgxZFMQiG46iqTkLYRYaAIeAOzsCk3N9dxc51vfOMbBAKBmNnbjIwMrrnmmoSaa8WRbBYuhCuvhHrRWhFgswgXZ2eTlZ3N2LFjefPNNx0jurKysnjrrbcYPXo0Pp8Pv9/PoEGDeO211+jWLbGbY9l4jlRx5AgcPAh79kCPHujo0ezevZvs7GzH3F5O7Nu3j+rqavr169emOBCbpDbVLF0KN98M+/eD1wuDB8M3v2k6qaEQMns2A0aPJhKJMH/+fBYtWsTRo0cZMGAAM2bMAGDbtm0MHz4cj8fD1q1bGTVqFHPmzGHjxo08+eSTlJeX8+1vf5sLLrigTWKpw2kIk4zSqYayt97qOnxVUPV6Vf1+DT/wgBYWFrZ43Yrf71e/368+n68udiMYDOrMmTMd18S6gfVzpIiamqaFUa9UZ2RotzgWNbmVYDCoK1eubLGJbuKwHdL25g9/aHHVykiECxNwybKyMv7855gdXuPGiqO9yc9veV0RWr4HtTterzeuDYvdsOJoby65pOGmO02QnZXFigRcMisri1mzZrW5HSuOZOCyoR9gHGI5ORAKkfHKK1zpknnH4/Hg9/vxeDx4PB4CgQChUIiBAwcSCATIyckhFArh8/m477774o4mc8L6OZJFRQXcdBO8/77Zwuvss812Xu++a95Pm2b+BXbs2MG8efMoKirijDPOYNKkSYTDYbZv305hYSEZGRl88MEHDBs2jLPPPpuysjKWLVvGsWPHuPjii+nRo0dcptkktclm3z546y3T5zjvvAYeUVVl9erV7N27l/HjxzN06NAUGmqdYMnlrrvg/vuhdoIsEIDXXoOTT2b//v2cd955fP65mWILh8PMmDGDp59+2jEPekpxGt8mo3RYP8fy5arBYKwf46STVCMRnTJlSoPAX6KxG/Pnz0+ZyVg/R5J45BGotytSHV9+SfFrr7F69eqYeIzy8vK4FhslCyuORFNvdXwDPB6qvvrKNQtgmZOgUowVR6K58krTx2hMJEK36dMdZ1wzMzP55je/mQTj4sOKI9HMmQMjR9YNS/F6zUq3RYuQQIDf//73BIPBumiuQCBAr169uOeee1Jnswt2tJJofD4zhP3Tn8w0fY8ecMMNcPLJAJxzzjls27aNRx99lF27djFp0iRmz55NKBRKseGxWD9He6FqfB05OZCba+I2gkHo0qVhnf37jaCamYOprKzk4MGDFBQUkO0QZtgWWp28xdIKli+Hvn1h6FDo3t2IYtAg6NkTpk+Hw4dhzRoYNswc79ULpkwxAmqEqvLTn/6Ubt26MXz4cE444QTuvfdekvJH7TS+TUbpsH6OTZtUAwH3uI3MTNVTTolJ5KJer+qQIaqNdlKaN29ezCLpQCCgv/jFLxJmMjbYJ0nMmWN+0U0F9mRmmqWQjY+HQqqrVjVorqCgwDGgp3v37gkz2U0c9rGSaD76CMJuaVmiqDZI5NKAvXsbvHVLclNUVNTujxYrjkQzebLjupQGqDZI5FJHOAzjG/YL3ZLXFhYWJiaIuAmsOBLNP/+zGaG4TaIFAjBrFhQUfD0xV3t82jQYMaJB9fnz5+NvJKRAIMC8efMSbXksTs+aZJQO2+dQNUla5sxR7dlTdehQ1YkTzethw1Qffth0OouKVG+5RbV3b9XBg1V/+Uuz0NqBt956S6dMmaIFBQV67rnn6ptvvplQc2lt8pb2osP7OY4j2pKk9gkROSQiH7icnywixSKyMVrSzw/cnkQiZiZ2yBDj07j6arjtNpOhuH7Jzibcsycfd+/OURGqRAh7PGh2NvTuDf/1XxDdrjxtcLqd1C/AJGAc8IHL+cnA0ubaaVw6zGPl5pub9ms0KhG3cz6f6qWXpuQr0IYktW8C8e3i0lk4dAgeewzKG6eadcd1fHHsGKxcCR843qBTQqJGKxNEZJOILBeRkxPUZvrzwQfND1vjweuFDRsS114bScSs7Aagn6qWisglwBJgiFNFEbkBuAFIeKKRlNCvn7szq7X075/Y9tpAm+8cqnpUVUujr5cBmSLimChCO1oG40GD4KyzEnP38HrhxBNh4sS2t5Ug2iwOEekZzUOKiJwebfNwW9s9bli8GGbMMALJzjZ3kyGON07U46EMqKHhRAleL5x/PrzxhhnZpAnNPlZE5A+YEUk3EfkcuBeT7hpVXQR8G7hJRGqACuCqaA+4c5CTA889Z4KKy8rMcFbEDEuffdbcXQYPBhEkGCQQCHB4xw6ys7PJqY0WCwRMO2lGs+JQ1aubOf8QJntx56C0FH7/e/jrX03/4Ac/MHEbwaApL71k1q0cPgynn26CeN54A4qKICMDGTiQbnPmmHDCJgSxf/9+Fi5cyMaNGzn99NO58cYbSfqj2Gl8m4xyXPo5Dh9WHTDga79GRoZ5vXy5OX/77S3zd3i9qv37Gxe6A5s3b9bc3FzNzs5WMElo8/Pz9aOPPmqXr4WN50gAP/6xcxxGz56qxcUtdoTVxXT8y784XmbChAkx8Rsej0enT5/eLl/LTRx2VjYe/vxn56FrSQk8/HB8bVVXw4svxhwOh8OOyWkjkQgrV66M7xptxIojHtz6COEw9InZmKp5cnNjDnk8HscktEDM1H17Y8URD7fc8vV6lFq8Xhg7Fq65pmF8RnMEAia7YCNEhJkzZ8ZEmPt8Pq6//vrWWN16nJ41ySjHZZ8jElGdO9dMkuXmmpjPwkLVzz8351etaj5+tLa/ccMNMcHEtZSUlOikSZM0EAhobm6u+v1+nTZtmlZUVLTL18LGcySQvXtN0pU+feDMMxs6rmpqTJbi3bvN3aS83Ownu327ydFxzjlmv7d+/Zq9zObNm9mxYwcjR45s1V73LcUmb2ktJSXwP/9jfslTp0LtnNDevSZTz0cffb1Qyecz+b+6djXhfl4vVFYat/iUKWaZZBpik7e0htdeM65xj8d0OiMRuPtu4wi7776mP7tkScP32dlwxRXw9NPu8aXphtOzJhkl7fscZWWxC49qg3Li8WfUL8Gg6mOPpfqbxYD1c8TJihXOKSKb2EynWcrKYNGi1n8+yVhxuFFVZf7eE01lZeLbbCesONy48ELngN+2OKL8fvinf2r955OMFYcb+fnwwAPmF1qbJjIYNB3USy6Jvz2fD4YPN4uejhPsaKUpvv99E5n11FNmSDtjhskpKmJiNX7847qp+DoBeb3GLd6zpxEEGH/IjBlw+eWQmZmyrxMv1s/RGiorYdcuM7zNyDB5Ng4dgq++MrEdRUUmnmPoUCOGcBh27jSiac0cTDtj/RyJ4pFHzB2josL4PTweU0TM3Epth9PvN3eR2bPhmWfMKKemBk49FV54wdxZ0h2n8W0yStr7OZx45RXH3aTjKhkZqqNGmXmaNAHr50gA991n7hhtoaYGPvkkrdanuGHFEQ/79iWmHa/XJIpLc6w44mHy5BZvrNMklZUxSVrSESuOePi3fzMjjpauLcnMNGKqP3wNBuGHPzwuOqR2tBIP/fvDxo3wH/8BL79s+h85OeYusG8fFBcbR9eBA/DllyZTz403Gj/J4sVmav+220yahuMA6+ew2CS1MRw5YoJ1unSBvDyzpdbhJlZxVlWZxUpdu5oOpddrHFqPPNI+E3TpgNP4NhklpX6OmhrVkSMbrkHJzDS5uaqqnD9z2WWq2dmxfgu/X/Xuu5Nrf4LB+jnqsWIF7NnTcA1KdTUcPGiWMzZmxw6z/NFpur2iAn71K+cNeI5zOqc4tmxxdmaVlMCmTc71m5ow83qN2DoYnVMcgwc7x2WEQs7pEwYPNp5NN6qr03JCra10TnFceunXHctaPB7jg/jOd2LrjxljitPdw+czK+bz8trJ2NTROcWRlQVvv22WGtTGYkyZYra5cIv0Wr7cbNFVb39YfD4TvPPgg8mxO8lYP0d1tRl3tHQpY02NKapmuUEi3Okpxvo53MjM/FoYGzeaFWx5eSYjz4gR5vXgwTBzJkyaZDyeH31kVrxdcQUMHGj6KVdfbVa2dSScxrf1C/AEcAj3JLUCPADsAjYD45prU1Pt53Bi5UpVkebjMbxe9/1S/H7VZ55J9TeJG9rg5/gdcHET56dhUksOwaSRXNhKnaaWa65pmaczHDaPIqc8HRUVJg1UotNPpohEZDCeATwZFeEaoIuI9EqUgUnjwIHEtBOJwNatiWkrxSSiz9EH+Kze+8+jx2IQkRtEZJ2IrHPbgShlJKpjWVNjhskdgKR2SDWdk9ROndr2NrxeOOWUtMpC3BYSIY59QN9670+MHju+eOklMyppipwck5Fn7FgjgPpOsawsk2Jh8eJ2NTOZJCLY52XgZhH5I3AGUKyq6R8g2ZisLDNEXbfOTLKdfjqccIJxfo0ZA+PGmXmXvn1NQI8qrF9v8nR4PGZIe8opqf4WCaVZJ1j9DMbAQRplMI6mtn4IM6IpB65V1WYH/GnjBLO0flGTNp/BWIEftsE2S5piPaQWV6w4LK5YcVhcseKwuGLFYXHFisPiihWHxRUrDosrVhwWV6w4LK5YcVhcseKwuGLFYXHFisPiihWHxRUrDosrVhwWV6w4LK5YcVhcseKwuGLFYXHFisPiihWHxZXjQhxHOMK/8++MYxwXcRGv8mqqTeoUpH3u82KKGctYDnCAY5g9XVezmru5mzu5M8XWdWzS/s6xkIUc5GCdMADKKOOn/JQjHEmdYZ2AtBfHK7xCBbEJZbPIYj3rU2BR5yHtxdGHPgix+5uECdODHimwqPOQ9uK4lVvx0zA3qBcvgxjEKEalyKrOQdqLYwITeIiHCBEil1z8+BnDGJazPNWmdXjSfrQCcC3XcjVXs4lN5JPPEBzyk1sSTtrfOWrx4WMIQ/gLf+Fu7uZVXiVCJNVmdWhadOcQkYuBBYAXeExV72t0fg7wC77OBfaQqj6WQDtZwxqmMpUaaqigghAhxjCGlawkm+xEXsoSpdk7h4h4gYcxyWhHAFeLyAiHqs+p6phoSagwFOW7fJcSSuqGtaWUsp71LDxOc+IeD7TksXI6sEtVP1HVKuCPmMS0SWM72/nSIU9uBRX8lt8m05RORUvE0dIktN8Skc0i8oKI9HU43+oktV68KM6J7bx4HY9b2k6iOqT/A/RX1VOAvwK/d6rU2iS1QxlKL2IzZgcI8H2+30qTLc3REnE0m4RWVQ+rau3ueI8BpybGPIMgvMiLdKUrIUJkkkmQIFOYYsXRjrRktPIeMEREBmBEcRUws34FEelVLzHtZcD2hFoJjGY0n/EZi1nMAQ5wNmdzJmc6utYtiaEleUhrRORmYAVmKPuEqm4VkZ9h9ul4GbhFRC4DajA7LMxpi1GKsoENHOYw4xnPozzKFrZwDufQhS6MZCRDGcpWtrKPfYxlrJ1naQ+cNmFJRnHbjOdT/VSH6lANaUj96lccfiT6k6mZmqd56lOf3qF3aEQjLd+BxlIHx8Omw4oyjWnsYhellDpO1dfWU5RqqimmmGMc4xEe4VmeTbLFHZu0EsdmNvMZn7XKLV5OOfOY1w5WdV7SShxf8VWb/BZOjjJL60krcYxnPDU0sfNzE2SSyaVcmmCLOjdpJY4QIe7nfgIE4hqi+vDRjW78hJ+0o3Wdj7SL55jLXE7hFB7kQQ5ykEwyeYu3OMYxssjiBE6ggAImMpEiivgH/+ACLuAmbiKf/FSb36FIO3EAnMVZjGMc5ZRTSin55OPBQ4AAYcJUUkmAQKrN7PCk1WMFoIgiCinEj58TOIF+9COHHIIE6UIXggTJJZfBDOYv/CXV5nZo0k4cJ3MyO9jheK6YYiqpJEyYj/mYK7iCdditwNqLtBLH3/k7hzjU4voVVPCf/Gc7WtS5SStxrGVtXPUVZXvi5/gsUdJKHOdzflz1vXg5jdPayRpLWoljDGPiWnbgx89d3NWOFnVu0kocAB/wAVOJ3TpcEIYwhAIKCBBgClN4kzcppDAFVnYO0s7PkUUWK1iRajMspMGdYze7uZ7rGcQgxjK2buF0Uz8ZZHAhFzKBCQxiENdzPbvZneqv0uFI6Z1jN7sZy1hKKCFMuMWfCxNmJSvr3u9hDy/yIu/zPgMY0B6mdkpSeuf4OT+PWxhOhAlTSik/42cJsswCKRbHKla1WRi1hAnzBm8kpC2LIaXiOJETE9peH8e1VpbWklJx3MmdCZtdDRDgX/nXhLRlMaRUHJdwCb/kl+REf+Jdg5JBRt1n/5v/ZjrT28nSzknK/Rw3cRPXcR0f8zE96IEPH6/zOrvYxU52solN+PARIkQeeYxjHBdzMYMZzFGOcohDDGKQTcPQDqRcHADZ0Z8FLOAwh5nOdG7mZpaylG1s4x3eIUKEMYzhIR6iC10A6Bb9sbQPaSGO53meOcyhhhqqqeZJniSDDEooabBM4T3eoytd+ZRP6U//1BncSUi5h7Sccq7jOiqooJpqwCShLabYdf3KWZyVTBM7LSkXx9/5e9xrVfazv/lKljaTcnHYjmT6knJxnM3ZZJEV12dGMrKdrLHUJ+XiyCCDpSwljzxyyCFAAB8+RjISj4N5mWTyPu+nwNLOR1qMVs7gDPazn6Us5QhHOJ/zGchAPuRDlrCEJ3iCKqq4lmu5l3tTbW6nQUx6huQzfvx4XbfOLitIB0RkvaqOb3y8RY8VEblYRHaIyC4RidkBR0SyReS56Pm1ItI/ATZbUkyiktReD3ylqoOBecD/S7ShluSTqCS1M/g6veQLwPkiYjO5HeckKkltXR1VrQGKgRMaN9TaJLWW1JDUoay2MkmtJTW0ZCjbbJLaenU+F5EMIA843FSj69evLxKRPXHY2ha6AUVJulY8pItd/ZwOJiRJLfAyMBt4B/g28Lo2M0ZW1aTdOkRkndNQLdWkq121JCpJ7ePAUyKyC5Ok9qr2NNqSHFLmBEsm6foXmq521ZLyuZUk8etUG+BCutoFdJI7h6V1dJY7h6UVWHFYXOkw4hCRviKySkS2ichWEbnVoc5kESkWkY3Rck+SbNstIlui14yZihbDA9GJy80iMi4ZdjVHWsRzJIga4EequkFEcoD1IvJXVd3WqN5bqvqNFNg3RVXdHF7TgCHRcgawMPpvSukwdw5V3a+qG6KvSzC7RR0vi2dnAE9Gtz9ZA3QRkdhN7ZJMhxFHfaLxJGPBMT3hBBHZJCLLReTkJJmkwF9EZL2I3OBwvqU7cCaVjvRYAUBEQsCLwG2qerTR6Q1AP1UtFZFLgCUQR4a61nOOqu4TkR7AX0XkQ1V9MwnXbRMd6s4hIpkYYTyjqn9ufF5Vj6pqafT1MiBTRNp9PaWq7ov+ewhYjImRqU9LJjeTTocRRzS46HFgu6r+yqVOz9ogJBE5HfP9m5w9ToBdwWgHGREJAlOBDxpVexmYFR21nAkU69e7baaMjvRYORv4HrBFRDZGj/0EOAlAVRdhZoxvEpEaoAK4qrnZ4wRQACyOajIDeFZVXxWRufXsWgZcAuwCyoFr29mmFmHd5xZXOsxjxZJ4rDgsrlhxWFyx4rC4YsVhccWKw+KKFYfFlf8PkrffSGJ5b90AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "print('The accuracy score of K-Mean: ',metrics.accuracy_score(y, model.labels_))\n", "print('The Confusion matrixof K-Mean:\\n',metrics.confusion_matrix(y, model.labels_))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BqJw2TLH2DJn", "outputId": "abe29757-3e1f-4342-ae45-398eb7933de2" }, "execution_count": 50, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The accuracy score of K-Mean: 0.24\n", "The Confusion matrixof K-Mean:\n", " [[ 0 50 0]\n", " [48 0 2]\n", " [14 0 36]]\n" ] } ] }, { "cell_type": "code", "source": [ "gmm=GaussianMixture(n_components=3, random_state=0).fit(X)\n", "y_cluster_gmm=gmm.predict(X)\n", "plt.subplot(1,3,3)\n", "plt.title('GMM Classification')\n", "plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 298 }, "id": "JrsVl0e_2Fgs", "outputId": "7602619e-4348-43b7-f1ee-c09f833f192f" }, "execution_count": 51, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 51 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI8AAAEICAYAAABmoadHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAm8klEQVR4nO2de3xU1bm/n3cml7nkAuEWuUiAcBW5GRVUKHhBgWq0tirUKlqLUNHa4+XXU+2x7enxeNpaFBW0KvXealXEIoioWLwUESyIgAgqoAHBoEBIQpKZeX9/7J2YZCbJzGRPZiDrmc/+kOy99trvJt/Ze613vetdoqoYDPHgSrYBhiMXIx5D3BjxGOLGiMcQN0Y8hrgx4jHEjRGPjYhsF5EzE1T3WBHZUu/3gSKyTkTKROQ6EblfRH6VgOv+UkQecrreOlQ14RtwCfAuUA7stX/+KSD28UcABYobnTfH3j/d/n26/fucRuWK7f2PNGNDDnAXsBM4BHxi/97ZPr4dOLON/j8ebnwPDtQ5HviiLeyv3RL+5BGRG4C7gT8A+UA3YCZwKpBRr+jHwGX1zksDLsL6I9fnE+Ai+3gtl9vnN2VDBvAacBxwDpaQxgD7gJPiua9W0hvYmITrOkuCv2G5WE+bC1so9wjwR2AP0NHe911gKfAWDZ88bwEvA1PsfXnAl1jijPjkAa6y685qxobt2E8eLEH9C9gP7AbuBTLsY4L1RNwLHAQ2AEPtY5OBTUAZUALc2PipALwOBIHDWE/AAfb9/66eLcXAOrv+T4Bz7P1XAJvt+j8Frrb3+4FKIGTXeQjoDvwaeKJevedhiXY/8AYwuNH93wh8ABwAngY8yXzyjAEygUVRlD1sl7vE/v0y4LEmyj7Gt0+pS+zzqpqp+0zgZVU9FIUdYP1xfw50xrqHM7BeswATgXFYf/RcrKfjPvvYw1h/0GxgKJZQGqCqpwNvArNVNUtVGzwxReQk+/5uAjrY19puH96L9aXKwRLSHBEZparlwCRgl11nlqrualTvAOCvwPVAF2AJ8A/7qVzLRVhP5j7AMKwva5MkWjydgVJVDdTuEJF3RGS/iFSKyLhG5R8DLhORDsB3gBeaqHchMF5EcmleZLV0wnqCRIWqrlXVVaoaUNXtwAO2PQA1QDYwCKvNtllVd9c7NkREclT1G1V9P9pr1uPHwAJVXa6qIVUtUdWPbLteUtVP1OKfwCvA2CjrvRh4ya63ButJ7wVOqVdmrqruUtWvgX8AI5qrMNHi2Qd0rt8+UdVTVLWDfazB9VX1LaxvxS3AYlWtjFSpvf8l4Fagk6q+HYUdx0RrtIgMEJHFIvKliBwEbsf6IqCqr2O9xu4D9orIn0Ukxz71QqxX1w4R+aeIjIn2mvXoRXg7r9auSSKySkS+FpH99rU6R1lvd2BH7S+qGgI+B3rUK/NlvZ8rgKzmKky0eP6F9TopjuGcJ4AbaPlp8phd7oko6nwVOFtE/FHaMB/4COivqjnAL7HaOgCo6lxVPQEYgvX6usne/56qFgNdsZ6az0R5vfp8DvRrvFNEMoHnsJ4Y3ewv4JJ6drUUHrELq6FeW59gCbUkDhuBBItHVfcDvwHmicj3RSRbRFwiMgKrkReJucBZwMoWqv+nXe6eKEx5HOuP8pyIDLJt6GT7QSZHKJ+N1Vg9JCKDgFm1B0TkRBE5WUTSsToDh4GQiGSIyA9FJNd+LRzEasDGysPAFSJyhm1nD9uGDKz241dAQEQmYbW/atkDdLJf5ZF4Bphi15uO9cWrAt6Jw0agDZyEqvp74D+Am7FucA9WG+L/EcFwVf1aVV9TuwvQTL1ql/s6ChuqsBrNHwHLsf6wq7Ee+e9GOOVGYBpWr+ZBrJ5HLTn2vm+wXgP7sHp6AD8CttuvupnAD1uyLYKtq7Ebw1i9nn8CvVW1DLgOSwTf2Pa9WO+8j7AaxJ/abcrujerdAlyK9WUrBc4FzlXV6lhtrEVa+BsZDE1ihicMcWPEY4gbIx5D3BjxGOImreUiiaFz585aUFCQrMsb6rF27dpSVe0S63lJE09BQQFr1qxJ1uUN9RCRHS2XCse8tgxxY8RjiBsjHkPcGPEY4iZpDWZDdAQJspa1CMIoRuHGzR72sJnNVFBBHnkUUURaEv6ULV5RRHphhT90wxr2/7Oq3t2ozHisaL7P7F3Pq+pvHbW0HbKSlVzIhVTZQZI+fBRRxCu8QoAAipJGGtlk8zf+xsQGg+xtQBRxyMcAo+yfs7ECzYc0KjMeK3gr6vjmE044QQ1NU6qlmqVZSpQfn/q0REviuhawRhMxe0JVd6sdTqlWWMBmGkafGRLA0zxNKIZwoCBBHufxBFoUTkwNZhEpAEYSOQZmjIisF5GlInJcE+fPEJE1IrLmq6++it3adkQppVQSMQo3IlVUsZe9CbQonKjFIyJZWGGQ16vqwUaH38cKWBqOFWz0QqQ6VPXPqlqkqkVdusTsDW9XjGc8PnxRl88iizNJyITXJolKPHbY4nPAk6r6fOPjqnpQ7WktqroESBeRaAOzDREYy1jGMx5/vWhdL17cuMPKevBwIidyNme3pYkti8cOlH4Y2Kyqf2qiTL5drnbekYtv5zIZ4kAQXuAF7uVexjGO7/AdHuABPuIjZjKTvvQln3xGMYq5zGUZy3C1sduuxTBUETkNa5LaBr4N6P4lcCyAqt4vIrOxgsQDWDMX/0NVmw2sLioqUjMwCiFCiP2JRIBAwn04IrJWVYtiPjGeLpoTW3vvqn+kH+kEnaAudWmmZuplepnu1/11x6fpNHWpS1HUrW6dqTMTZgtxdtWNeJJAqZZqR+2oolLnp8nQDD1RT9SQhnSaTovoy7ler0+IPfGKx4xtJYEFLOAwh9F68/SqqWYTm1jNav7G3yKedx/3tZWJUWHEkwTWsz6iD0cQPuCDJp2DNdQk2rSYMOJJAqMYhRdv2H5FGcnIJntNGQ3SGSUfI54kcCVX4sffQCSZZDKSkRRRxJVcGfG8G7ihrUyMCiOeJNCBDqxmNVOYQiaZZJPNVVzFy7wMwIM8yE/5aV0XPZ10fsEvuJ3bk2l2GEmbbmz8PKlDvH4eEwyWJMop5x7u4WEeZh/7CBIErEazHz8TmciN3MgKVvAIjwAwgAF8zMcoykAGso1tBAhwGZcxk5l48ES8lqK8wAvczd18zdecz/n8nJ/TkY6tu4l4+vdObO3Zz3NYD+vxerxmaEZEf07tx61u9ain2TIo6lWvjtExGtBAxOvdoreoX/115TM1U/toHz2oB1XV+HmOKP7O3/mET6im+ewmQYIc5nCL9VVSyQY2sIQlYce+4ivu5E7KKa/bV0UVX/IlD/Jg7MbXw4gnCSxjGRVUOFrnIQ6xghVh+9/jvYhd/EoqWcrSVl3TiCcJ9KKX44OdHjx0p3vY/m50i+h0dOGiF71adU0jniRwFVc57vBz4+ZH/Chs/yhGcSzHhsUBefBwLde26ppGPEmgL315lmfJIy9icJcgZJLJNKbRgx748ePBgxs3Xvvjxk0mmWSRRT75LGEJ3egWsa5lLGMEI/DiJZtscsnlYR5mJCNbdR+mq54kJjGJvexlAxuooII00urGrjLIoD/96UAHFGUjGxGEwQxmM5sJEWIIQ/iYj6mhhqEMbTYQrCc9WcMaPuVT9rOfoQx15MlnxJNE3LgZ0USe7HLKWcACNrKRwQxGURawgOM5nou4CDduBjO42fp3sIOneIr97GcKUxjL2CaDzuIinv69E1t79vO0xGf6mXbVrnXztsT+oGiWZukxeozu1J3N1vGMPqNe9db5kvzq14v1Yg1qMKwsxs9z9DCDGZRSyiGspTJqvXtgdcn3spfZzG7y/EMcYjrTqaSyzpdUTjmL7Y9TGPGkGEGCvM7rzU74CxJkCUsaBJPVZwUrIroCyinnSZ50zFYjnhSjuWD4+rhxN1muOR9SOulx29YYI54Uw4WL8zivRQFcyIVNHp/AhIj7/fiZ3vwqSDFhxJOCzGc+fehDNtlkkIHL/qSTThZZ9KMfc5nb5PkePDzP8/jtjwcPXrzMYAZncIZjdpquegrSla5sZjPLWMbHfMwQhhAkyBa2MJjBnMVZLU7wO4MzKKGEhSykjDImMpGBDHTUTiOeFGMzm9nEJsopR1G605097KE73bmKq3iXd3mN1xjL2CbjdwBKKOHf/JuRjGQ4wxNiqxFPilBGGedxHu/wTsRQDRcuQoTw4atrD/2VvzKZhis+hQgxm9n8hb+QSSYBAgxiEC/zMp2jXtctSuJxDjmxGSdhQ36kP2oxOCxSQqfdurtBPX/WP6tPfQ3KpWu6nq1nN3ltjJPwyKWGGp7hmRaDwxoTIhQ2QfBu7g6LFaqhhhWs4GtaXJosJox4UoBqqgkQaLlgI6qoYj/7G+w7wIGIZd246zzWTmHEkwL48bc4yBkJH76wJJZTmBLRR5RHXquDvxpjxJMiPMiD+PFHPertx893+S5jaLiA8q/5NZ3pXDcj1Y0bHz4WsMDZEXVMbytlGM1oNrCBu7mb13mdMsrqjqWTTh/6UEQRG9lIiBCXczkXcEGYIPLJZyMbuZ/7eYM3KKSQ67iOQQxy3GYz6S8JlFGGIAQI1I1RBQiQS26rng6KcoADZJFV9+qqoopqqskmu8nz4p30F01auV4iskJENonIRhH5WYQyIiJzRWSbiHwgIqNiNaQ9sIY1DGc4HehANtl0pCM55JBNNnnk0Y1ucafDfYIn6E53utKVjnTkRm7kB/yAHHLII49hDOM93nP2hlrqyxNdEu/JwFKsBeJHA++2VG978/N8rp9HlZTbpz59UV+Mqe7FujjMt+OyP/X3ZWlWxCAykpzEuxh4zLZlFdBBRI5xQNtHDfOZH5Ufp4IKbuO2mOq+jdvCfDsh+1OfaqqZx7yY6m4Op5J49wA+r/f7F0TIEt+ek3hvYlPUTsAdxLbw3na2R1Wummo2sjGmupvDqSTeUaHtOIn3GMZETOgUieM5Pqa6ox349OIN69q3BkeSeAMl0MAD1dPeZ7C5iqvIIqvF3pQPH//L/8ZU9+3cHpYt3o27gbPQhQs/fmYwI6a6m8ORJN7Ai8Bldq9rNHBAVXc7ZuVRQB55rGUtU5mKD19dF10QXLjIIINTOIXlLI/56XAyJ/Mqr3Iap5FNNoMYxCM8wm3cRne6k0suF3ERa1lLJzo5dk9OJfEW4F7gHKACuEJVm3XitGc/T6qRsOROqvoWNP+stbt718R68fbKMpbxK37FetZTQw1ppFFIIYc5jAcPV3M113BNk3HMNdRwD/fwIA8SIMA0pnETN5FFVtveSDz9eye29ubnqeUv+hf1qrdFX8/5en7E80Ma0kk6qYFfx6MeHa7DtUZr4rIJE8+T+gQIcAM3tLiOVgUVvMIrrGd92LH3eI+VrGzg1znMYT7hExaxyHGbm8OIpw3Zxa6oMn2BNU61ilVh+9/l3YixP4c4xNu83WobY8GIpw3JIy/qpR/TSKMnPcP296BHxAwXXrwca/Vh2gwjnjYkiywu4RIyyWy2nAsXOeREXHztu3wXH74wf1EaaVzKpY7a2xJGPG3MfOZzMReH9aRqEzrVZoJfycqIva0MMniTNxnO8LrJfP3ox2u85vzsiBYw8TxJYj/72cMedrCDrnRlOMPZznYyyYyYWzASJZRQQw296d2qOCCTxDvFWcxiZjOb3ezGjZtCCvke32MXu8gii8u5nOEMJ0SIu7iL+7mfgxykD30ophiwBlcHMxgXLjaykeM5nulMZx3reIzHqKCC7/N9zuRMx0NOIxJP/96JrT35eX6mP2vWr+NWt3rVq3N1rg7SQc2WbZy826te9ainLnbHr36dptM0pKGo7SNOP495bSWYIMGo0+amkRbXFJzG+PGziEVRJzVIWBiqoXX8lb9GXTbabnxLlFPO80QKfnAWI54Ek0de1GWdaqfUTrdJNEY8CWYyk6Ne79ypxN4ZZHAZlzlSV3MY8bQBTS04C9Qt1pZFFi/xUpOZu1y48OKtS/Tkw0cWWfSlLz58dXV48HAHd8QcjRgPpsHcRlRSySxm8W/+jR8/p3IqV3Ilq1mNHz+TmIQfPwBb2MIc5lBKKSdzMuMYR5Agm9nMIAaRRhof8iEDGcipnEo55SxhCYc5zDmcQ1e6xmRbvA1mI54EUUIJb/ImeeRxOqc36HEpytu8zU52UkQRAxiQREuNkzCluIVbuJM769owPny8xmscx3HsZjenczpf8AVgdeWLKeYJnoi4DkVKE49zyIntaHUSLtWlDVbVq/0cq8dqSEM6QSdomqY1OOZTn96ldyXNZkwwWGowj3kNVtWr5Wu+5jVe423eDnMEVlDh6GS8tsKIx2HqZ7eojwsX3/BNk932SIJLdYx4HOZiLo7ooAsRYgpTIo6Yp5PO9/heW5jnKEY8DjOd6QxlaF23u3aBtfu5Hx8+HuVR/PgbNKaP4Rj+i/9KptlxYXpbDuPBw5u8yd/5O4tZTFe6MoMZHMdxAJzGaWxiEw/wANvYxjjGcTmXt/20GQcwfp4EoaqUlJSQnZ1NTk4Ou3btwu/306FDh2/LoOxmNx48LY6BVVHFHvbQjW4thrHGihlVTyGWLl1Kr169GDBgAF26dMHv99OvXz/y8/OZMmUK+/btYxWrGMhA+tGPYziGCUxgF7vC6lKU3/AbOtOZwQymE524jduaXC6pTYmnf+/EdrT6edavX68+n0+BiFt6eroOmzQsLNGTW93aX/uHrcQ3R+eEJW7yqU//oH9wzGaMnyc1mDNnDlVVVU0er6mpYfMpm6kONczVEyTIbnazkpUN9t/BHWGJmyqo4Pf83jmj48SIx2G2bt1KMBhstoz2V6pdkRM97WRng9+/InISrFJKk/7qMuJxmPHjx5OZ2XyDVlcq3lB4oqcgQYpo2G5tKrn3IAa1TZB7MxjxOMy1115LdnY2bnfkQU6fz8dlrsvo5urWIPjLh49JTGIIQxqUv4u7wjKK+fAxhznOGx8r8TSUnNiO1gazqurOnTt1+vTpmp+frwMGDNCxY8dqfn6+Dhw4UO+77z4NBoNaqqV6nV6n3bW7Fmqh/lH/2GSWizf1TZ2gE7SbdtPv6Hd0pa501F7M7AlDvCQyifcCEdkrIh82cXy8iBwQkXX2duT52VtBKBRi3rx59O/fny5dujB16lSu/7/rka6CuARJEyRHyMzMJL9nPl2u7YLsF6RacAVdZKo1Q/R2bqeGmmTfTmy09GgCxgGjgA+bOD4eWBzrI+9oeW3Nnj27oV+nE4pE9vEAyvUoh8Mn8HnUo+fquUm5BxKYxHslOLzK11HC3r17eeihh6ioqOeH8UKTPeg04DaINLpwmMO8yqt8SMQHfEriVG9rjIisF5GlInKcQ3WmPB9++GF4t7y5r1l3mh2KduPmfd53wrQ2wYlR9feB3qp6SEQmAy8A/SMVFJEZYCUCPvbYtk1ElAh69+5NdXUjZ18WNHIIf8tXtPh1LaCg9Ya1Ea1+8qjqQVU9ZP+8BEgXkYiJYvQoywDfr18/TjnllIZPn+bm7VUCj9r/NsKNm570ZCxjHbYycbRaPCKSb+dhRkROsuvc19p6jxQWLlxIcXExmZmZZGZm0tvdm/6T+tNgIoT9v+xKc1npzkM0aEa7cXMGZ/AGbyTdaxwLLb62ROSvWD2qziLyBVaTLx2sBN7A94FZIhLA+k5dYrfg2wXZ2dk8/fTTlJeXU15eTpcuXRARagI1PPXyU/Tr3o/C7oWICH6/H5/fx5Z9W8gMZeLPtqINa2d8HmlEk8R7agvH78XK/t4uOHToEI8++ijLly+noKCAn/70pwwYMAC/34/f72fRokXccsst7Nu3j5NOOom8vDzeeOMNSktLSUtLo2/fvkyfPp3p06c3K5jd7GY+81nHOk7iJK7marqQYq/6ePr3TmxHop9n37592qdPnzq/Tlpamvp8Pl26dKmqqv785z9v2r9Tb3O73VpQUKClpaURr/OBfqA5mqOZmlnnA8rTPN2qWxNyX8Tp5zHiiYGbb75ZMzIywsSQn5+vBw4ciEo4tVt6erredNNNEa8zRseEORFd6tIpOiUh9xWveMyoegw8//zz4V1zoKysjPvuuy+mumpqanjuuefC9gcJRkzeHSLEq7wa0zUSjRFPDGRnR26jBINBevQIW9iwRXJycsL21S6fFIloF3trK4x4YuC6667D7/c32Od2uxk5ciSXXnopGRnRJ2fy+XzMnj07bL8gTGNa2AwJDx5+zI/jMzxRxPOuc2I7Ets8oVBIZ86cqR6PR3NycjQrK0sHDRqkX3zxhaqqrlixQt1ud1TtnRkzZmgwGIx4nTIt03E6Tn3q0xzNUa96dZJO0kqtTMh9YeJ52o6dO3eyevVqevTowejRo7F9pAAEAgHmz5/P9u3bufTSS6moqGDNmjVs3ryZtLQ0TjvtNMaMGUPv3r1bvM4HfMAWtjCUoU2GozqBSe6UIMrKyvjHP/5BRUUFEydOrBuT27lzJ7NmzWLr1q11E/k8Hg8ul4uOHTsyZMgQ3G43VVVV9OzZkwkTJjB06NAk3knTmOROCeC1116juLgYl8tFMBgkFApx6623cujQIe64445mz33hhRca/J6ZmckFF1zAE0880WR88xFHPO86J7ZUb/OUl5drVlZWWHvF4/HE5M+pv/n9fn3ooYeSfWthYPw8zrJs2TJcrvD/nsOHo1tsLRLl5eXcf//9rTErpTDiaYLq6mrLBe8wzc0mPdIw4mmCs846i5qa8IB0rzd+R53X6+WHP/xha8xKKYx4miAvL4+5c+fi9XpJS7P6FX6/n+LiYiZPnhxzfR6Ph8GDB3Pttdc6bWrSML2tZvjJT37C2LFjefzxxykrK6O4uJjTTz8dEeGpp57i5ptvrgu1qBWY2+0mJyeH/Px8PB4PAD169KC4uJjzzz+f9PT0ZN6Soxg/TxxUVVWxbds2gsEgaWlpDBw4kL179/LNN98wYMAASktL2bdvHwMGDCA9PZ1gMMjHH39MTk5OXGNgicb4edqIefPmcfPNN1NZWUkoFMLlcuFyuRARMjIy6hrEXq8Xt9vN5ZdfzpNPPsnhw4cJBAKccMIJPPvss+Tn5yf5Thwgnv69E1uq+3ki8dJLL6nX643bz4MdQHb88cdrKBT9SnyJBuPnSTx33HEHlZURpj7EQCAQ4NNPP+X994+c+VlNYcQTAyUlJY7U43a72b17tyN1JRMjnhgYP358RK9zrFRVVVFUFHP7NOUw4omBX/3qV+Tk5DQIwWiO9PR0XC5Xg+653+/nmmuuOSoazKa3FQMFBQWsW7eO3/3ud7z44otUVlaSnZ1NUVERJSUlHDhwgMGDB/Pll1/y9ddfM2nSJK6++moef/xxFi5cSIcOHbj++uuZOrXZ2UxHDMbPYzBJvGNl//79zJo1iw4dOpCbm8uVV17Jvn1Nz5Kurq7mlltuoWPHjrjdbtxuNz169GDevHkJGUA9Ioinf+/Elkw/TyAQ0KFDhzaYg5Wenq6FhYVaXV0d8ZzzzjtPMzMzw/w2Xq9Xb7311ja+A2fB+HmiZ9myZezYsaPBHKyamhr27NnDokWLwspv2bKF5cuXRwynqKys5E9/+hPl5UfeelmtpV2KZ8OGDRGdfWVlZaxfvz5i+eYGNN1uNzt27HDUxiOBdimewsLCiHE5WVlZ9O8fnpeqsLCQQCAQtr+WmpqalBzwTDTtUjznnntuXcO3FpfLhd/v5wc/+EFY+REjRjBixIiITx+Px8P06dPJzc1NqM2pSLsUT0ZGBu+88w4TJ06si8WZMGECq1atajJScOnSpVx88cV1cTtgCefaa6/lnnvuaSvTU4p27+epqalBVaOeKhwIBAgEAqgqmZmZjgxXJBvj54mT9PT0OuGsW7eO0aNHk5ubS79+/RgyZAi5ubkUFhYybdo0xo0bx9VXX83WrVtZvXo1F1xwAX379qV///5MnTqVVPgytCkt9eWBBcBemk7iLcBcYBvwATAqGh9BqsXzvPrqqyoiUSVmSk9Pj5inx+v16pNPPpnsW4kZEpXciZYzwE8GltoiGg28G82FU008+fn5rQryqt1yc3O1qqoq2bcTE/GKx4kM8MXAY7Ydq4AOInJMS/WmGl9++aUj9YRCITZu3OhIXamOE22eHsDn9X7/wt4XhojMEJE1IrLmq68ir2CXLJxq+AYCATp27OhIXalOmzaYNYWTeE+cOLHVdbjdboYNG0ZBQUHrDToCcEI8JUCver/3tPcdUSxatIjCwsJmy2RnZ+Pz+Rg5ciQFBQUNnIYZGRkMHTqUhQsXJtrUlMGJYLAXgdki8jfgZOCAqh5xAboZGRls3bqVNWvWsHz5ck466SQ6derE0qVLGTFiBKNGjWL9+vX06tWLwYMHo6qsXbuWnTt34nK56Nu3L8OGDUv2bbQpLToJ62eAB/bQKAO8vXTAvcA5WEt2XKGqLTo8UsVJaEjgpD9tOQO8AtfEemHDkU+79zAb4seIxxA3RjyGuDHiMcSNEY8hbox4DHFjxGOIGyMeQ9wY8RjixojHEDdGPIa4MeIxxI0RjyFujHgMcWPEY4gbIx5D3BjxGOLGiMcQN0Y8hrgx4jHEjRGPIW6MeAxxY8RjiJsjQzz798Ovfw2jRsHZZ8PLLyfbIgNHwtoTBw7AyJHw5ZdQu6b522/DrbfCL36RXNvaOan/5Jk/H/bs+VY4AOXl8JvfWE8kQ9JIffG89BJEWl0vIwPWrm17ewx1pL54evSASOtbBYPQtWvb22OoI/XF87OfQePcyG439OsHxx+fHJsMwJEgnjFj4N57ISsLcnIsIY0YAUuXJtuydk/q97YArrgCpk6F9eshLw8irA9haHtS/8lTi8djieaVV6xu+ssvQyiUbKvaNVE9eUTkHOBuwA08pKp3NDo+HfgD3+YivFdVH3LQTli1CiZOhEDA6n1lZVmvr1dfhcxMRy9liI4Wnzwi4gbuAyYBQ4CpIjIkQtGnVXWEvTkrHFW46CIoK/u2237okNVVnz/f0UsZoiea19ZJwDZV/VRVq4G/YSXubjs2b4avI+QRr6yEv/ylTU0xfEs04ok2SfeFIvKBiDwrIr0iHI8/ibfbbT19mjpmSApONZj/ARSo6jBgOfBopEJxJ/EeMACOibAigc8HP/lJXAYbWk804mkxSbeq7lPV2tVbHwJOcMY8GxF47jno2NFqKKeng98PEyYY8SSRaHpb7wH9RaQPlmguAabVLyAix9RL3H0esNlRKwGGD4fPP4eFC60R9lNPhdGjIw9dGNqEaPIwB0RkNrAMq6u+QFU3ishvsZbaeRG4TkTOAwJYK+RMb5VVqvD++7BvHxQVwQMPwIYNcNpp0KEDDB1qvco2boSSEitkw4xztT3xrLPkxNbkeluffaY6YIBqVpaq12stCdZ4E7G29HTV3FxVj0f1xhtVQ6HmF5YyRIRErbfVpqjCpEmwbZvlx4kUilFbThVqaqxgscOHYd48eOqptrW3nZNa4vngA6tdE8+wQ0UFzJnjvE2GJkkt8XzzTev8NpEciYaEkVriKSqyxq7iIT0dzj3XWXsMzZJa4snKgjvvtJx/sXTBPR7o3Bl++cvE2WYII/XieWbOhGHD4J57rMD39HR4802rUZyRAZ06QbduMHYslJbCrl1w5pkwa5YV62NoM1JPPACnnGLN0aqosHpdeXngcllPpGAQqqqsnw1JJbVeW2A9TQYNssJNO3WC3r0hO9sajujQwfo3JwcKC63AMEPSSD3xHHccbNkS+diBA9ZTJxiETz6BCy4As9Rk0kgt8bz1FuzdG335ykr4n/9JnD2GZkkt8bz7bmzlVa1AMUNSSC3xnHFGbOXdbjjxxMTYYmiR1BLPiBGxTavxeuGWWxJmjqF5Uks8AB9+aM2SaIyIJaxu3axu+oQJsHKl1TMzJIXU8/NkZMCyZcm2whAFyX/ybN8OP/6xNfd85MhvExs0t6WlwVlnWVOR+/Wzzt++Pdl30u5I7pNn+3ZLMGVllu8mWoJBa7JfLTt2WDHO//439OnjuJmGyCT3yfPf/x27cCIRDFrDGL/9rTN2GaIiueJZsaL1wqklGIQ33nCmLkNUJFc8PXs6W1+PSHMRDYkiueL5xS+cGx33+eA//9OZugxRkVzxTJ4Mf/yjNWqenR37HKy0tG/P/f3vYcqUxNhpiEjy/TyzZsGVV1qj5F27WlGBr79uzaD4+GMroZPHY0UZ5uZacT7nnGOFZBw8aA2k9utn0qwkgeSLB6w/fGYm3H23NdFvyhSYPRsWL4ZNm+Bf/7JmVIwYYaWY69DBOq9zZ2szJIXUEM8zz8D06Vbwe00NPPaY9UoqK2s4Dee996z56p99BgUFybLWYJN8D3NFhfXaqqy0hANWku4DB5qev3XKKW1nn6FJki+et96Kfa7W7t0tlzEknOSLxzR0j1iSL55TT7VG0mNh6NDE2GKIieSLJy3N6lXl5lr+Gp/P6poPHWpNt2lMero1AGpIOqnR2zr5ZKsds3ixtZLNGWdA377w0UfwwguwYAFUV1vJvG+7LdnWGmxEm0oUmWCKiop0jZk2kxKIyFpVLYr1vKheWyJyjohsEZFtIhK2QpqIZIrI0/bxd0WkIFZDDEceTiXx/jHwjaoWAnOA/3PaUEPq4VQS72K+TZ/7LHCGiMk0ebTjVBLvujKqGgAOAJ0aVxR3Em9DStKmXXWNN4m3ISWJpqveYhLvemW+EJE0IBfY11yla9euLRWRHTHY2ho6A6VtdK1YSBW7esdzkiNJvIEXgcuBfwHfB17XFnwAqtpmjx4RWRNPVzTRpKpd0eJUEu+HgcdFZBtWEu9LEmm0ITVImpOwLUnVb3iq2hUtyR/bahv+nGwDmiBV7YqKdvHkMSSG9vLkMSQAIx5D3Bw14hGRXiKyQkQ2ichGEflZhDLjReSAiKyzt/9qI9u2i8gG+5phoQRiMdceWP5AREa1hV2tJTXieZwhANygqu+LSDawVkSWq+qmRuXeVNXvJsG+CaralENwEtDf3k4G5tv/pjRHzZNHVXer6vv2z2VYqw0eKZPXi4HH7OWvVgEdRCTCoqqpxVEjnvrY8UQjgUjpVceIyHoRWSoix7WRSQq8IiJrRWRGhOPRriCdUhxNry0ARCQLeA64XlUPNjr8PtBbVQ+JyGTgBaxXRaI5TVVLRKQrsFxEPlLVlW1w3YRyVD15RCQdSzhPqurzjY+r6kFVPWT/vARIF5GEz1dW1RL7373AQqwYqfpEM/icchw14rGDzx4GNqvqn5ook18bpCYiJ2Hdf7Oj/w7Y5bcb8IiIH5gIfNio2IvAZXavazRwQL9dLTplOZpeW6cCPwI2iMg6e98vgWMBVPV+rBH/WSISACqBS1oa/XeAbsBCW7NpwFOq+rKIzKxn1xJgMrANqACuSLBNjmCGJwxxc9S8tgxtjxGPIW6MeAxxY8RjiBsjHkPcGPEY4saIxxA3/x9QLCJ4LeiiuwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "print('The accuracy score of EM: ',metrics.accuracy_score(y, y_cluster_gmm))\n", "print('The Confusion matrix of EM:\\n ',metrics.confusion_matrix(y, y_cluster_gmm))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Mt5KrYIx2H4O", "outputId": "f2bcb8f0-929a-4277-bac4-fd050b9f1f2a" }, "execution_count": 54, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The accuracy score of EM: 0.36666666666666664\n", "The Confusion matrix of EM:\n", " [[50 0 0]\n", " [ 0 5 45]\n", " [ 0 50 0]]\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "jv0d3iBC2KmQ" }, "execution_count": null, "outputs": [] } ] }