{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "source": [ "!pip install pgmpy" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 0 }, "id": "QSPxdrEcQHWO", "outputId": "1337b06c-ed4b-4a07-de73-300c60db1783" }, "execution_count": 9, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting pgmpy\n", " Downloading pgmpy-0.1.20-py3-none-any.whl (1.9 MB)\n", "\u001b[K |████████████████████████████████| 1.9 MB 23.6 MB/s \n", "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.0.2)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.8/dist-packages (from pgmpy) (4.64.1)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.7.3)\n", "Requirement already satisfied: joblib in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.2.0)\n", "Requirement already satisfied: pyparsing in /usr/local/lib/python3.8/dist-packages (from pgmpy) (3.0.9)\n", "Requirement already satisfied: torch in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.12.1+cu113)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.3.5)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from pgmpy) (1.21.6)\n", "Requirement already satisfied: statsmodels in /usr/local/lib/python3.8/dist-packages (from pgmpy) (0.12.2)\n", "Requirement already satisfied: opt-einsum in /usr/local/lib/python3.8/dist-packages (from pgmpy) (3.3.0)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.8/dist-packages (from pgmpy) (2.6.3)\n", "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->pgmpy) (2.8.2)\n", "Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->pgmpy) (2022.6)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->pgmpy) (1.15.0)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from scikit-learn->pgmpy) (3.1.0)\n", "Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.8/dist-packages (from statsmodels->pgmpy) (0.5.3)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch->pgmpy) (4.1.1)\n", "Installing collected packages: pgmpy\n", "Successfully installed pgmpy-0.1.20\n" ] } ] }, { "cell_type": "code", "source": [ "from pgmpy.models import BayesianNetwork\n", "from pgmpy.factors.discrete import TabularCPD\n", "import networkx as nx\n", "import pylab as plt" ], "metadata": { "id": "jH9IPyU1PlZr" }, "execution_count": 10, "outputs": [] }, { "cell_type": "code", "source": [ "# Defining Bayesian Structure\n", "model = BayesianNetwork([('Guest', 'Host'), ('Price', 'Host')])\n", " \n", "# Defining the CPDs:\n", "cpd_guest = TabularCPD('Guest', 3, [[0.33], [0.33], [0.33]])\n", "cpd_price = TabularCPD('Price', 3, [[0.33], [0.33], [0.33]])\n", "cpd_host = TabularCPD('Host', 3, [[0, 0, 0, 0, 0.5, 1, 0, 1, 0.5],\n", " [0.5, 0, 1, 0, 0, 0, 1, 0, 0.5],\n", " [0.5, 1, 0, 1, 0.5, 0, 0, 0, 0]],\n", " evidence=['Guest', 'Price'], evidence_card=[3, 3])\n", " \n", "# Associating the CPDs with the network structure.\n", "model.add_cpds(cpd_guest, cpd_price, cpd_host)" ], "metadata": { "id": "_MySp3BBQEpA" }, "execution_count": 11, "outputs": [] }, { "cell_type": "code", "source": [ "model.check_model()\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 0 }, "id": "XQ1Vf9DPQS5I", "outputId": "57d34fbf-49e5-4991-c592-9d9397e76b3a" }, "execution_count": 12, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "code", "source": [ "# Infering the posterior probability\n", "from pgmpy.inference import VariableElimination\n", " \n", "infer = VariableElimination(model)\n", "posterior_p = infer.query(['Host'], evidence={'Guest': 2, 'Price': 2})\n", "print(posterior_p)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 0 }, "id": "z1PVHAJAQWH9", "outputId": "9ed7ce55-52fe-4f9e-ba11-310b2df2c648" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "+---------+-------------+\n", "| Host | phi(Host) |\n", "+=========+=============+\n", "| Host(0) | 0.5000 |\n", "+---------+-------------+\n", "| Host(1) | 0.5000 |\n", "+---------+-------------+\n", "| Host(2) | 0.0000 |\n", "+---------+-------------+\n" ] } ] }, { "cell_type": "code", "source": [ "nx.draw(model, with_labels=True)\n", "plt.savefig('model.png')\n", "plt.close()" ], "metadata": { "id": "U88HCTdEQZIQ" }, "execution_count": 15, "outputs": [] }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "SjxWmq9TQtae" } }, { "cell_type": "code", "source": [], "metadata": { "id": "UWiV5HBZlrW5" }, "execution_count": null, "outputs": [] } ] }